AD-Al110 271 PAR TECHNOLOGY CORP ROME NY F76
SABERSs STAND~ALONE ADIC BINARY EXPLOITATION RESOURCES SYSTEM, "ETC(U)
SEP 81 A J FRANKLINs, R L CALDWELL» S COLE F30602-76-€-007B
UNCLASSIFIED RADC=TR-81-250~VOL~1

IEEEEEENEE
ENEEEEEEEEENER
HEEEEEEEEEEREN

HEEEEEEEENENEE
SEEEENEEEEEEEN
EEEENEEEEEEEER
HEEREREEEEEEEE




.0 &0
| £ jize
="

28 fpis s

MICROCOPY RESOLUTION‘ TEST CHART




t
¢
!
}
1
13







UNCLASSIFIED
SECUMTY CLASSIFICATION OF THIS PAGE (When Dace Entered)

" REPORT DOCUMENTATION PAGE
Al LM L 7 GOVT ACCEIMION NO

RADC-TR-81-250, Vol I (of three)

READ INSTRUCTIONS
BEFORE COMPLETING FORM
T. RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitte)
SABERS,

STAND-ALONE ADIC BINARY EXPLOITATION
RESOURCES SYSTEM , yon

$. Y"(aem L es%gbvlllﬂ
pril 78 - January 81

s./ PERFOAMING OX0. REPORT NUMBER
A

’
’

LI
[ B RA
"atberc ], Frankiin Thomas L. McGibbon HETOR RANT HundT@
Randy L. Caldwell Kathy H. Michel /5 30602-78-C-0078
Scott Cole James R. Wilson
IS PERFORMING ORGANIZATION NAME AND ADDRESS | 0. PROGRAM ELEMENT, PROJECT, TASK |
PAR TECHNOLOGY CORPORATION 147;'(.)‘17"k | o T
228 Liberty Plaza , 9550114
Rome NY 13440 L .
11. CONTROLLING OF FICE NAME AND ADORESS 12. REPORT OATE
Rome Air Development Center (IRDT) Feptember 1981
Griffiss AFB NY 13441 u‘. nuultl OF PAGES
2
T MONITORING AGENCY NAME & ADORESS(I{ different from Controliing Office) | 18. SECURITY CLASS. (ef thic report)
Same [INCLASSIFI®D |
nmm
P/A SCHEOUL

T W e e -
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the ebatract entered in Block 20, if dlifersnt (rom Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Garry W. Barringer (IRDT)

19. XEY WORDS (Continue on reverae side if y end id fy by block ber)
Data Base Management Systems ADCOM Applications
Transaction Processing Orbital Mechanics

' Graphic Systems
erry-Univac 1652 Terminal

h‘é"é&%‘ﬁa@”&“&é’i&ﬁ‘é&"g fort h.;sml;g'ét:’ ::':;kc'l":;rgn and implement a cohesive
system for the Aerospace Defense Command (ADCOM) to provide an upgraded
and improved analyst capability for the ADCOM Intelligence Center (ADIC)
and its missions. In addition, SABERS has developed system software (such
as a data base management system, a user interface, and a graphics packagef

to support current and future ADIC application needs., The SABERS applica-
tion system provides an upgraded capability for the ﬁ analyst, utilizes
DD ,3%", 1473  €oimion oF 1 nov e 15 ossOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

oz o0




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entoreq)

use, and is designed to minimize the amount of information the analyst ha
t> enter into the system. The application functions implemented are built
around a set of ten (10) data bases which gre directly accessible by the
analysts. The functions include a number of numerical and graphical
applications. System software that is part of the current SABERS imple-
mentation includes a data base management system (DBMS), a user interface,
and a graphics package. Goals reached in the DBMS development include thej
ideal that the application programmer's software interface to the SABERS
DBMS should be at a high enough level such that the programmer can easily
describe to the DBMS the information content of his data base, easily
create the data base, and then easily access the information in the data
base. Furthermore, powerful data base search and retrieval capabilities
are part of the DBMS. Data base management applications provide a
generalized capability for examining, updating, adding to or deleting
information contained in the data bases. Goals realized by the user inter
face subsystem include the ideal that the application programmer's soft-
ware interface to the SABERS user's terminal is to be at a high enough
level that the programmer does not have to concern himself with the idio-
syncrasies of the terminal. It should be easy for the programmer to
describe to this interface the format of the display to be presented to
the user. It should be easy for the interface to present the display to
the user and to receive inputs from him. Finally, it should be easy for
the programmer to access the inputs. The primary goal of the graphics
package which is realized in SABERS is the ideal that an application
programmer should be able to describe a picture to the graphics package
using data values he understands. The graphics package performs all the
necessary transformations to map a picture from the user's coordinate

system into the terminal's coordinate system. The graphics package is
also as terminal-independent as pogsible. A major part of the SABERS
effort was the development of software for the Sperry-Univac 1652 terminal
This development involved designing and implementing code within the 1652
to interface it with the SABERS computer system (the VAX 11/780) as well
as designing and implementing the code to control the terminal.

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu's BAGE(When Date Entered)




A TABLE OF CONTENTS
| Section
1. Introduction. . « . ¢« ¢« ¢ ¢« o o ¢ s o o
1.1 Background. . « ¢« « ¢ o ¢ « ¢ o o o ¢ » &
1.2 Potential Users of SABERS . . . . . . . .
1.3 Summary of the Functional Areas . . . . .
1.4 Summary of the Document . . . . « « « ¢« &
2. SABERS Software Architecture. . . . . . .
2.1 SABERS System Overview. . « « ¢« o « o o &
2.2 The Interprocess Communications Mechanism
2.3 Data Bases and Data Files . . . . . . . .
2.4 Structured Programming. . . « « ¢ « ¢ o o
3. SABERS Application Algorithms . . . . . .
3.1 Time Algorithms . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o &
3.2 Coordinate Systems, . . . . . . « + « & &
3.3 Space Object Ground Trace , . . . . « « «
3.4 Radar Related Problems., . . « « ¢ « o o« &
3.5 Photo Reconnaissance Problem. . . . . « .«
3.6 Threat Window Algorithm . . . . . . « + &
3.7 Map Projections . . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o &

114

1=-1
1-1

1-2

1-6
2-1
2-1
2-4
25
2-6
3-1
3-1
3-4
3-17
3-24
3-33
3-54
3-58




Figure
2-1

3-1

3-2

3-4
3-5

3-6

3-8

3-9

3-10
3-11
3-12
3-15
3-14
3-15
3-16
3-17
3-18

LIST OF FIGURES

The Current SABERS System Organization. .

Earth-Centered Inertial and Geocentriec
Coordinate Systems. . . . + « ¢ ¢« ¢« ¢ & &

Ellipsoid Earth Model . . . . . . ¢« . . .

Local Topocentric Coordinate System . ., .

Orbital Element Set . o o v o o s o o o o

Using Equal True Anomalies to Produce

Equal Gl"Ouﬂd Distances. e o o o o o &+ o o

Definition of Eccentric Anomaly . . . . .
Ballistic Missile Trajectory. . « « « « &
Radar Coverage Limits . . . . . . « « « &
Azimuth and Elevation Angle Definition, .
Hemisphere Checking « « o « o « « o o o &
Radar Range Insufficient for Coverage . .
éatellite Passing Through Radar Coverage.
Camera Field-of-View and Mounting Angles,
Slant Range Calculation ., . . « &« & o o &
Definition of 2 z=Rcosa + Usina « ..
Camera Cone Does Not Intersect the Earth.

Points of Tangency Not in Cone Coverage .

Reconnaissance Coverage . . . « + ¢ ¢ o &

Page
2-3

3-6
3-7
3-12
3-14

3-19
3-20
3-23
3-25
3-28
3-30
3-31
3-32

3-34
3-36
3-39
3-47
3-49
3-52

i, JAAMACIN




QW
*
i
4
i
i
¢
i
J

LIST OF TABLES

. Table Page
3-1 mth“atic sn“l s * * L] L ] L] L] . L] L] » L] - L] L ] L ] L] - L] L] L] L] 340

L
;
A

-

1

f .
IO
l_ .
- ¢

E‘
y
§




W
2

1. INTRODUCTION
This report contains the final summary of the work accomplished under
Contract F30602-78-C-0078, entitled the "Stand-Alone ADIC Binary Resource
System™, referred to as SABERS. This report is in compliance with Data Item
007 of contract Line Item 0002 of this contract,
The total documentation of the accomplishments realized in the
performance of the SABERS contract is being provided in two separate
documents:

o This final report, which provides:

1. The description of the design objectives of the software and of
the numerical algorithms (the body of the report).

2. The information required by the users to employ the functional
tools and to maintain the software (the User Manuals contained
in Appendices A-F).
o The computer program documentation, which describes:
1. The particulars of the routines and subroutines,
2. The schema of each of the data bases,
1.1 BACKGROUND
The purpose of the SABERS effort was to develop a set of tools b
demonstrate improvements to the Aerospace Defense Command (ADCOM) intelligence

analyst at the ADCOM Intelligence Center (ADIC). SABERS requirements included
the ability to review past and current events using a computerized data base,

1=1




mathematical analysis of space phenomena, graphical presentation of the
results of the analysis, and uniform and efficient user interaction.
Additional constraints were portability, terminal independence, structured
programming, and documentation,

SABERS uses existing software, where possible, In addition, the newly
developed software is portable within the I&W community (AN/GYQ-21(V)
environment). The software was dewieloped on the Digital Equipment Corporation
(DEC) VAX 11/780 computer in compatibility mode. Compatibility mode emulates
the DEC PDP 11/70 minicomputer and the RSX-11M operating system.

Terminal independence is accomplished in SABERS through the existence of
interface utilities which translate between 'soft.ware and hardware protocol,
This mechanism allows uniform software coding for input and output at the
application level, and defers terminal considerations to the interface
software,

SABERS software is designed to be modular, Although the programming
languages are FORTRAN and assembler, the code produced is as structured as
possible, Documentation is provided at the program level in the program

listings, at the system level in the computer program documentation and at the
user level in this report.

1.2 POTENTIAL USERS OF SABERS

SABERS documentation addresses three classes of users, the Space and
Missile Analyst (SMA), the application programmer, and the program maintainer.
The SMA is the ADIC analyst using the end product to research past events and
to analyze present situations. The application programmer is the designer and
coder of new applications to be included in SABERS. The program maintainer is
the systems programmer modifying and updating the existing SABERS code, -

[




AR L B e aa i S s ekl

S T T

The knowledge requirements of each user are distinet, The SMA must know
how to cause SABERS to execute its applications, and how to interact with the
application routines. The application programmer must know what the existing
software accomplishes, and how to call the subroutines and functions he needs.

The program maintainer must know how the routines perform their functions and
how modification will affect the other software,

1.3 SUMMARY OF THE FUNCTIONAL AREAS

The result of the SABERS contract is a complementary structure of
routines in six functional. areas: applications, map drawing, user
interaction, graphics, data base management, and terminal control. The
software developed in each of these areas 1s designed to interact with and
suppert all of the other areas. This complementary structure provides a
testbed for the SMA to evaluate the effectiveness of computer aided research
and analysis. In providing this service, the complementary structure
functions as a preliminary system design; therefore, it is referred to as the
SABERS system throughout the documentation,

Each of the six functional areas of the SABERS system is designed to
provide capabilities which may be easily modified and expanded. With the
exception of the applications and map drawing functional areas, the collection
of software composing a functional area may be extracted as a unit from the
complementary structure and integrated within scme different software
structure, The software composing each functional area provides a basis for
the corresponding unit which is to be implemented in an operational SMA
system,

1.3.1 Applications

SABERS applications software 1s composed of routines that are developed
to solve problems of interest to the SMA. The problems are related to data
organized in the following areas:




GRS MO IU b 2, 4 Tomn ., A i =y b Ty et 05 vt s

i Iy et V. m e e ’ . . < i 1 M1 g0 AT ey 17 T A S AT R

O i

o summary information about all current and historical launch events
e description of characteristics and capabilities of all launch vehicles
e description of characteristics and capabilities of all launch pads
o description of characteristics and capabilities of Blue tracking radar
systems
e description of characteristics and capabilities of Blue spaceborne
systems
o description of the status of all objects in space ‘
;
o description of characteristics and capabilities of Red support facilities 3

® collection of orbital element sets collected by Blue radar sensors

¢ collection of IR values collected by Blue IR sensors

¢ collection of polynomial coefficients reported by Blue IR sensors

The problems include reviewing and updating the data, performing analysis
on the data to compute the parameters of space phenomena (such as the time and

dhdlied ot dedn g

location of a space launch), and presenting the data and analytic results in a ;
graphic format (such as the location of Red support facilities and the ground »?
trace of an orbiting payload). '

The application routines act as executive routines, These routines make
calls to the routines in the remaining functional areas toc draw maps, request

data from the SABERS data bases, interact with the SMA, and plot graphical
outputs.

1-=U4




1.3.2 Map Drawing

The map drawing routines provide the computation necessary to draw the
different map projections required as background for some application plots,
The routines rely upon the data base routines to access the map data and upon
the graphics routines to plot the maps.

1.3.3 User Interaction

The SMA interaet; with the applications through the Terminal Independent
Transaction Processor (TITP). TITP presents a form to the analyst with the
names of the data renuired and possible default values, Using the screen
editing capabilities of TITP, the SMA enters the desired values and sends the
data to the application. TITP performs error checking before sending the
information back to the application.

The user interaction routines allow the application programmer to
describe the format of an entire screen image; that is, to describe the
location of the fields within the screen, the data types of each field and the
legal values of each field., TITP also allows the application to address,
modify, and read the fields of a screen image by name,

1.3.4 Graphics

Applications cause graphic output to be produced by calling routines in
the Terminal Independent Graphics Processor (TIGP). TIGP is a direct
implementation of the ACM-~SIGGRAPH Core proposed graphic system standard.

1.3.5 Data Base Management

Applications manipulate the data through the SABERS Data Base Management
System (DBMS). The data is organized into data bases managed by the DBMS.
These data bases are easily defined and created by the application programmer




SR e e RN T N S N A s g e i e e e !

using the provided data description language. DBMS provides capabilities to
add, update, and delete information within the data bases, DBMS supports
complex assertions on multiple key fields in performing data base searches.

The SABERS DBMS is developed using DEC RMS-11, capable of searching an
indexed sequential file based on a single key. The SABERS implementation
includes a FORTRAN interface to RMS-11, complex multi-key queries, multiple

indexed sequential files and multi-user operations.

1.3.6 Terminal Control

f : The terminal identified as the primary analyst terminal is the Sperry- :
' Univaec 1652 (S-U 1652) terminal, The first known interface between the S-U
1652 and the VAX was developed for SABERS using the DZ11-A asynchronous
multiplexer for EIA RS-232 terminals, making the S<U 1652 1look like any
teletype device to the VAX, and allowing the use of the DEC supplied device

driver for communication.

In addition to supporting the communication protocol, the developed
software supports the programming of the variable function "soft keys." The
soft key is programmed with a sequence of characters, which are transmitted to
the VAX for interpretation whenever the analyst presses the soft key.

B Software is also provided to download predefined soft key definitions from the
VAX.

1.4 SUMMARY OF THE DOCUMENT

The organization of this report is based upon the organization of SABERS.

The documentation of each functional area is provided in an appendix which may

be extracted from the report at the same time the software unit is extracted

; from the SABERS system. The information appropriate for each type of user is
provided in the appendix for the functional area.

1-6




e -

The remainder of this report is divided into 2 sectiona, 6 appendices,
and one attachment:

. X e Section 2 describes the software architecture, It describes the

interaction required by the functional areas in the complementary
structure,

o Section 3 describes the mathematical algorithms used in the SABERS
applications,

® Appendix A is the Space and Missile Analyst User Manual, describing the
operation of the SABERS system and the user's interaction with the

applications in the application functional area.

: o Appendix B is the Applications Programmer User Manual and Program
B Maintenance Reference Manual for the SABERS map drawing functional area.

1 e Appendix C is the Applications Programmer User Manual and Program

Maintenance Reference Manual for the Terminal Independent Transaction
Processor (TITP), the SABERS user interaction functional area.

e Appendix D is the Applications Programmer User Manual and Program
Maintenance Reference Manual for the Terminal Independent Graphics
Processor (TIGP), the SABERS graphics functional area.

e Appendix E 1is the Applications Programmer User Manual and Program
Maintenance Reference Manual for the Data Base Management System (DBMS),
the SABERS data base management functional area.

o Appendix F is the Program Maintenance Reference Manual for the Sperry-
Univac 1652 terminal, the SABERS terminal control functional area.




® Attachment 1 is a copy of the FLECS User Manual, This is provided for
application programmers and program maintainers who may wish to write new
applications in FLECS, or who may need to read the source code of SABERS.

e il

B . IS TP Lt




R & e

pi i e

3
3
S ey wm"‘j

2. SABERS SOFTWARE ARCHITECTURE

This section describes the method of interaction between the fumctional
units composing the SABERS system. Section 2.1 presents the system overview.
Section 2.2 discusses the interprocess communication mechanism, and Section
2.3 discusses the use of data bases and data files.

2.1 SABERS SYSTEM OVERVIEW

The process image size under the RSX-11M operating system is 32k words.
Since the total storage requirements of all the SABERS software is much
greater than this limit, the software is modularized into several independent
utility processes which operate concurrently with the application processes in
support of the applications. These utility processes communicate with the
application processes through the use of the Macro-11 Assembler interface
described in Section 2.2.

Two of these utility processes coordinate the multi-user access to the
SABERS data bases, These utilities are the Data Base Manager (DBM) and the
Memory Management Service (MMS), The DBM processes the data base access
requests, and the MMS manages the tables necessary for DBM to work. These two
utilities are invoked once to support all SABERS users, and their resources
are shared among all applications, These utilities together form the Data
Base Management System (DBMS).

The remaining two utilities are the Terminal Independent Transaction
Processor (TITP) and the Terminal Independent Graphics Processor (TIGP). A
unique local copy of each utility is invoked for each user, The local copy
includes the Device Manager (DM) appropriate for the user's terminal. The DM
is a Macro-11 Assembler interface for the type of terminal on which the user

is logged in.




The SABERS account is maintained on the computer in the form of a
directory tree. The roet of the tree is the SABERS default directory. This
is the directory in which the DBM and MMS utilities are initiated. A
subdirectory (or branch) off the SABERS root is maintained for each recognized
SABERS user. The user initiates the execution of applications routines from
his subdirectory. The local copies of the user's TITP and TIGP utilities are
also initiated in this subdirectory.

The user's SABERS environment is established at the time the user
"logs-on" to the system (the log-on procedure is described in Appendix A, the
Space and Missiles Analyst User Manual). If DBM and MMS are not currently
running, they are initiated in the SABERS root directory as detached
(ownerless) shareable processes. After the user is verified to SABERS through
the use of a system password, the correct default user subdirectory is
established. The versions of TITP and TIGP with the DM for the user's
terminal type are copied from the SABERS root directory to the user's default
subdirectory and invoked. SABERS applications may then be initiated by the
user. The requested application is copied from the SABERS roeot directory to
the user's default subdirectory and initiated. This guarantees that the
application process is local and unique to the user,

An application process expires as soon as its task is completed. The
local copy of the application is deleted from the user's default subdirectory
to prevent the buildup of files in the user's area, ihe local copies of the
TITP and TIGP processes expire and are deleted when the user logs off from the
system. The DBMS utilities (DSM and MMS) are ownerless, and are halted by
SABERS when the number of SABERS users reaches zero. Thus the first SABERS
user may log off without affecting any other user,

The system environment for three users is pictured in Figure 2-1, In
this figure,

2-2




DBM MMS

| ' Applicatio | ' Application Application l
. Program ' t Program '
[ ( : {
I " |
! : ! '
- ! " i
o] D) i [ 0¥ | ™) 1y

74 N

. ;
s H

USER 1 USER 2 USER 3

0
E' . Figure 2-1 The Current SABERS System Organization
:
‘i
;
E
r '
¥ i
|
I j ]
p
- |

2-3




0 s0lid rectangles are independent processes

0 processes enclosed in dashed boxes are operating under the user's
default subdirectory

o DBM and MMS are operating under the SABERS root directory

o DM is a terminal specific module required to interface the utility to
the user's terminal

0 arrows show the lines of communication,

2.2 THE INTERPROCESS COMMUNICATION MECHANISM

The utility processes communicate with an application process through a
Macro-11 Assembler interface. This interface makes use of the system service

message sending capabilities and the global event flag capabilities of the
RSX-11M operating system,

The interface modules are part of the application processes, and are
constructed to make the communication mechanism transparent to the application
programmer. The application program includes calls to the utilities just as
if the utilities were physically part of the application process. The
interface intercepts these subroutines calls and transforms them into messages
directed to the appropriate utility process. The interface copies the
parameters of the subroutine call into a message buffer and sends the message
buffer in 13-word packets to the utility process, using the Send Data System

Service, After the message is sent, the application process m"hibernates"
{(takes up no system resources).

The operating system delivers the message to the utility by generating an
Asynchronous System Trap which awakens the hibernating utility. (Note that
placing inactive processes in a state of hibernation allows the operating
system to manage the active executing processes more efficiently). The
incoming message is decoded by the interface into a standard FORTRAN call
which is then executed., Thus, the communication interface is also transparent

2=l




to the utility programmer. When the utility is finished executing, the
results are made available to the calling application through the transaission
of a message through the operating system.

One further refinement is required in interfacing with the DBM because of
its global nature. Since requests for data base operations may be made by
several applications, a synchronization mechanism to insure security of access
is provided by the gloSaI event flag capability eof the operating system. The
application interface waits until the global flag shows that the DBM is
available, sets it to show the DBM is not available, and sends the message.
The application interface resets the global flag after receiving the data
transfer from the DBM,

2.3 DATA BASES AND DATA FILES

Information necessary for the operation of SABERS is stored in data bases
and data files, Global information available to all users is stored in the
SABERS root directory. Global data bases contain the map data (coastlines and
political boundaries) and the data organized to support the applications
developed to solve problems of interest to the SMA (as presented in Section
1.3). Any changes to these global data bases affects all other SABERS users,

Local information, which is not accessible to any other SABERS users, {s
ho maintained in the individual user's default subdirectory. In addition to any
E local data base required by applications, local data bases exist to store the
:5 " map plotting parameters, the current launch event identification number, and
’ the last record reviewed. Local data files are used by the local copy of TIGP
to store retained segments, and by the local copy of TITP to store screen

display formats and screen responses,
Data bases and data files established and maintained by the utilities are

transparent to the user and the application programmer. The information
stored is used to perform calculations, to provide default responses, to aid

25




graphics, to format and display transaction screens, and to check user
responses.

2.4 STRUCTURED PROGRAMMING

To support structured programming in a FORTRAN environment, the FORTRAN
Language Extended Control Systems (FLECS) preprocessor has been employed where
feasible. Such SABERS facilities as TIGP, TITP, the map drawing routines, the
Data Base Management System, and some applications, have been programmed using
FLECS. A copy of the FLECS User's Manual is included with this report.

FLECS expands the FORTRAN language by making the control structures
recommended by modern programming practices avajlable to the FORTRAN
programmer . These  structures include IF, UNLESS, WHEN . . . ELSE,
1 , CONDITIONAL, SELECT, DO, WHILE, Rgy.AY WHILE, UNTIL, and REPEAT UNTIL. 1In
| - addition, editorial features, such as indenting, are provided to improve the
appearance and readability of prinved programs.

The FLECS preprocessor accepts programs which use these conventions and
. outputs code which conforms to FORTRAN 66 standards for compilation in a
__ l production compiler. FLECS was made available without charge to this contract

: and is available without charge to SABERS as implemented on the AN/GYQ-21(V).

2-6

’ e




- e S

- e S |
!
:

3. SABERS APPLICATION ALGORITHMS

This section describes the mathematical algorithms developed for SABERS.
The time algorithms presented in Section 3.1 and the coordinate systems
discussed in Section 3.2 are used in almost all of the SABERS applications.
Although the calculation o a satellite ground trace is important in many of
the applications, the algorithms presented in Section 3.3 are directly used in
the OVERLAY GROUND TRACE and OVERLAY TIME MARKS ON GROUND TRACE applications.
The solution of the radar related problem discussed in Section 3.4 are the
basis for the RADARS VS, ORBIT applications. The algorithms developed in
Section 3.5 for the photo reconnaissance problems are used in the SATELLITE
RECONNAISSANCE applications. The equations presented in Section 3.6 describe
the algorithm used in the GENERATE THREAT WINDOWS application. The equations
used to generate and plot points on the different map backgrounds for the

application outputs are presented in Section 3.7.
3.1 TIME ALGORITHMS

Time is represented in SABERS by two values, the calendar day and the
clock time since midnight. The user enters and receives the calendar day as
the Gregorian date (year, month and day), or, alternatively, as (year, day
number), in which the month and day information have been combined into the
day number. The clock time is presented and received by the user as mean

solar time (hour, minute, second) in 24-hour format.

The algorithms expect the calendar day to be encoded as a Julian date
relative to January 0, 1900 at midnight, and the clock time to be the
fractional part of the day since midnight. The benefits derived are simple
time difference calculations, and the ability to express the exact time in one

value (the complete Julian day = Julian date + fractional day).




- - - o=

A A M e TR

3.1.1 Julian to Gregorian Date Conversion

The conversion between the user representations of time and the algorithm
representations of time are based upon two algorithms presented by Henry F.
Fliegel and Thomas C. Van Flandern in the Letters to the Editor section, page
657, of reference [4]. The algorithms were presented as a FORTRAN arithmetic
statement function and as a FORTRAN subroutine.

3.1.1.1 Gregorian to Julian Date Conversion

The Julian date arithmetic statement function as presented by the authors
returns an jinteger Julian date at noon valid for any Gregorian date producing
a Julian date greater than zero. The algorithm makes use of the truncation
feature of integer arithmetic in FORTRAN.

JD (I, J, K) = K -~ 32075 + 1461 * (I + 4800 + (J - 14) s 12) / &
367 *¥ (J -2 - (J - 14) /7 12 ® 12) / 12

3% ((I + 4900 + (J - 14) 7127/ 100) / &4

I+

where I = year, J = month (number from 1 to 12) and K = day of month.

This algorithm, when evaluated for December 31, 1899, yields JD =
2415020, This implies that the Julian date of January 0, 1900 at midnight is
2415020.5. Changing the function to a real-valued function, and recognizing
that the time interval between two Julian dates is the difference of the two
Julian dates, the SABERS algorithm to convert from (year, month, day) to
Julian date is:

DAY (IYEAR, MONTH, IDAY) = IDAY - 32075
+ 1461 ®* (IYEAR + 4800 + (MONTH - 14) / 12) /7 4

+ 367 ® (MONTH - 2 - (MONTH -14) / 12 * 12) / 12 (3-1)
- 3 * ((IYEAR + 4900 + (MONTH - 14) / 12 / 100) / 4
- 2515020.5

3-2




3.1.1.2 Julian to Gregorian Day Number Conversion

A closed form expression may be derived from the FORTRAN expression (3-1)
to convert from (year, day number) to Julian date. Letting JUL be the real-~
valued Julian date required, and DNUM be the day number, we want

JUL = DNUM + DAY (IYEAR - 1, 12, 31)

Substituting IYEAR = IYEAR - 1, MONTH = 12 and IDAY = 31 in (3-1), we find

JUL = DNUM + 365 * IYEAR + (IYEAR - 1) / 4
3% ((IYEAR - 1) / 100 + 1) / &

693960.5

again making use of the integer truncation feature of FORTRAN.

3.1.1.3 Julian to Gregorian Date Conversion

The second algorithm presented by the authors converts from the Julian
date JD to the year, month, and day. Written in the form of a FORTRAN
subroutine, it also makes use of the integer truncation feature of FORTRAN.

SUBROUTINE DATE (JD, IYEAR, MONTH, IDAY)

L = JD + 68569

N=M4%1L/ 14097

L=L -~ (146097 * N + 3) / 4
I = 4000 ® (L « 1) / 1461001
L=L - 1461 %1 /4 4+ 31

J = 80 % L 7 2447

IDAY = L - 2447 % J / 80
L=J/ N

MONTH = J + 2 - 12 % L

IYEAR = 100 ®# (N ~ 49) + I + L
RETURN

END

3-3




-
%

The SABERS subroutine differs only in replacing the input integer Julian
date JD with a real Julian Date D and adding the Julian date of January O,
1900 at midnight. The first line of the subroutine is thus replaced by

SUBROUTINE DATE (D, IYEAR, MONTH, IDAY)
JD = D + 2415020.5

Of course, the Gregorian date may be expressed as (year, day number) by
solving for the day number DNUM with (2 - 1) by

DNUM = DAY (IYEAR, MONTH, DAY) - DAY (IYEAR - 1, 12, 31)

3.1.2 Mean Solar Time-Fractional Day Conversion

The conversion between mean solar time and fractional day since midnight
is straightforward. Let F = fractional day, H = hour (2i-hour clock), M =
minute and S = second, then

F=(H®* 3600 + M ¥ 60 + S) /7 86400
and

H = [24 # F]

M = [1440 ®* F - 60 * H]

S = 86400 * F - 60 #* H - 3600 * M

where [X] means the greatest integer function of X,

3.2 COORDINATE SYSTEMS

There are three coordinate systems used to describe a point's location.
These are the earth-centered inertial (ECI), the geocentric, and the local
topographic (ENU) coordinate system. An orbital element set is used to define
a satellite's position, and will also be described in this section.

3-4




3.2.1 Earth-Centered Inertial Coordinate System

The earth-centered inertial (ECI) coordinate system has its origin at the
center of the earth. The principal axis points toward the vernal equinox
(denoted by ¥y ). The x-y plane is in the earth's equatorial plane, and the z
axis points to the north pole; completing the right hand system (See Figure
3-1).

The ECI coordinate system is the reference system for the other systems
in this section. This is a result of the characteristic of the ECI coordinate
system that it does not change in its orientation in the time scales the

SABERS algorithms deal with.

3.2.2 Geocentric Coordinate System

The geocentric coordinate system is a rotating frame of reference. The
origin of the system is the center of the earth. The coordinates of'a point
are given as (A, ¢, n), where A is the longitude, ¢ is the geodetic
latitude, and h is the altitude of the point above the reference ellipsoid.
As shown in Figure 3-1, the longitude is the angular deviation, measured at
the equator, of the meridian passing through the point from the Prime Meridian
(passing through Greenwich, England), -180°<5 A < 1800' By convention, a
positive longitude indicates that the point is to the east of Greenwich.

The earth is modeled as an ellipsoid generated by rotating an ellipse
about the 2z axis. As shown in Figure 3-2, the line from a point P
perpendicular to the reference ellipsoid at A will intersect the equatorial
plane at B. The acute angle of intersection at B is defined as the geodetic
latitude ¢. The geocentric latitude ¢' 1is defined as the angle between A
and the equatorial plane measured at the center of the earth. These angles

are related by

3-5




Figure 3-1 Earth-Centered Inertial and Geocentric Coordinate Systems

VA




a

e

Figure 3-2 Ellipsoid Earth Model




The distance along the perpendicular between P and A is defined as the
altitude above the reference ellipsoid h.

3.2.2.1 Hour Angle

The geocentric coordinate system described above is a rotating system.
The angular deviation of any point from the vernal equinox at time t is
defined as the hour angle 6. As shown in Figure 3-1, 6 = 6g + A, where 6 is
the hour angle of the Prime Meridian. As reported in reference [3], pages

20-21, the Greenwich hour angle may be closely approximated by

where
6, = 99.6909833° + 36000.7689° T, + 0.00038708 T2
o
with
T = Julian date at midnight relative to January 0, 1900
u - 36525
At = fractional days since midnight

3-8




and

[
[ ]

= §3§—§f%1§37§ revolutions/year
360,.9856473 degrees/day

Q.
ot

The hour angle 6, 0° < 6 < 360°, defines the linkage between the rotating
geocentric and non-rotating ECI coordinate systems.

3.2.2.2 Geocentric to ECI Transformation
The transformation from geocentric coordinates to ECI coordinates 1is

taken directly from Transformation 4, pages 399-400, in reference [3] (See
Figure 3-2).

A' ¢v ho eG"> X, Ygz

¢ =tan~! 11 - 12 tan¢]
, ati1-(r-fA)
Rc = —£

1~ (2f - fz) 0032 ¢' b

R =-\/Rf +he 4 2R_ h cos (¢ - ¢)

¢' + sin”! [ % sin (¢ - ¢') ]

(=]
"

6=z 6 A
G+

R cos § cos o

»
"

R cos 6§ sin @

«
"

R sin §

z =

where




semi-major axis of the earth

1 e.r. (earth radius)

6378.16 km.

3.2.2.3 ECI to Geocentric Transformation

The transformation from ECI to geocentric coordinates is taken directly
from Transformation 3, pages 398-399, in reference [3] (See Figure 3-2).

X, ¥, 2, 0. > 2,4, h

R =\/x2 + y2 + 22

a = 1:.am-1 ( % )

A= Cl-eG’ ‘18°O_<_A_<_180°
§ = tanm—2—, -90° ¢ 5 ¢ 90°
X2 + Y2

1]
Starting with the estimate ¢ = S, the following equations are executed in an

]
iterative manner until ¢ is within the required tolerance. :

' 2
Rc = a 1 - (2f2- f )2 -
1 - (2f - £€) cos® ¢

]
-1} tan ¢

¢ = tan
(- n?

3-10

AR L ER N A ot
-




us\/n"’-nﬁunzu- ¢')-Rccos(¢-¢') <

1,' = 6~ sin”) [%sin (¢ - ¢')]

3.2.3 Local Topocentric Coordinate System

The local topocentric coordinate system used by the SABERS algorithms is
defined by pointing the principal e-axis towards local east, pointing the n-
axis towards local north, and completing the right hand system by pointing the
u-axis up (See Figure 3-3).

The transformation from ECI coordinates to local topocentric coordinates

is given as follows:

cSo0
"
()
N < %
!
N < X

x
where(y) is the origin of the local topocentric system in ECI coordinates
z] O

and G is the rotation matrix (see page 319 in reference [5] and page 3-5 in

reference [8] ),

~-sin 8 cos @ 0
' \J '
G=]-sin$ cos 6 ._sirn ¢ sine cos ¢

cos ¢' cos 6 cos ¢' sin 8 sin ¢'

where ¢' is the geocentric latitude of the origin and 6 is the hour angle of




Figure 3-3 Local Topocentric Coordinate System

3-12




R RERTRET R T TR T AT
-

S T T TR AR

the origin. At time t, the 1location of the origin expressed in ECI
coordinates determines the hour angle and the coordinates of the origin in the

geocentric coordinate system via the algorithms presented in Sections 3.2.2.1,
3.2.2.2, and 3.2.2.3.

3.2.4 Orbital Element Set

The development presented in this section is due to Dr. Ranjan V.
Sonalkar, as reported in reference [8], pages 3-1 to 3-21.

3.2.4.1 Description of the Orbital Elements

SABERS algorithms receive satellite orbit information in the set

( TE' 8, e, i, w, M, n, %. %}). The epoch time, Tg. is the time for which
the orbital element set has been observed. As shown in Figure 3-4, the right
ascension of the ascending node, {1, is an angle measured in the earth's
equatorial plane. It is defined by the vernal equinox and the ascending node
(the intersection of the orbit plane and the equatorial plane for which the
satellite is ascending from the southern hemisphere to the northern
hemisphere). The eccentricity of the orbit, e, is assumed to be 0 < e < 1,
defining an elliptic orbit with the center of the earth at one focus. The
inclination, i, is the angle between the equatorial plane and the orbit plane
at the ascending node. The argument of perigee, w, is the angle measured in
the plane of the orbit defined by the ascending node and the periapsis (the
point of the satellite's closest approach to the center of the earth). The
mean anomaly, M, indicates the satellite's position in its orbit. The mean
motion, n, measured in revolutions per day, contains information about the
period of the orbit and the semi-major axis of the orbit ellipse. The

quantities '% and {% are the first and second time derivatives of the mean

motion, respectively.

3-13




Figure 3-4 Orbital Element Set

3-14




3.2.4,2 Calculation of Satellite Position

Given a satellite orbital element set, the algorithm to calculate the
satellite's ECI position and velocity vectors, X and £, for At from epoch

time, T;, begins by calculating the value of the semi-major axis (in earth
radii) at epoch.

a=yd X .+l s_le?

=3

where

(1 -~ 3 sin2 1)

2
2

P 3301 - 22
(nz)u e)

3
-5 9

§ a

u = gravitational constant of the earth

= 398600.5 km3/sec2

J2 = second zonal harmonic coefficient of the geopotential function

= 0.00108248

Next, the secular perturbations are introduced.

3-15

et . S




% J2 ncosi

Q=02 .

At

-g-Jzn (2..% sin? 1)
W = wo + At
201 - 52

where 90 and w_. are the unperturbed values of the orbited element set, and

o
2 and w are the perturbed values. Then the eccentric anomaly, E, is solved

for, using the Newton-Raphson iteration method for Kepler's equation,

=
1]

E -e sin E

for

N e

M=M°+n At + At

where Mo is the mean anomaly at time t = TE and M is the mean anomaly at time

t = TE + At. The following are solved for:

L (true argument of latitude) = 2 tan™ : : :

E .
tan-2-+ w #
R (range) = a (1 - e cos E)

R (radial component of velocity vector) = ua % sin E

Y ua (1 - ¢ !

R

RV (transverse component of velocity vector) =

] Defining unit vectors U in the radial direction and V perpendicular to
> >

% : the radial vector in the direction of the transverse component as

1

3




X cos Lcos Q -~ sin L sin Q cos i

U = uy 2|lcos L 3in Q + sin L cos Q cos 1
> u sin L sin
z
vx -8in L cos § - cos L sin g cos 4
V=V ]=|-sin L sin Q + cos L cos Q cos 1
> vy cos L sin {
z
we have
x
X=|yl=R- U
> 2 >
X
X =|y)]=R-U+RO -V
> |\, > >

3.3 SPACE OBJECT GROUND TRACE

The orbital element set can be used to calculate space object ground
traces. This section presents algorithms for calculating the ground traces of
satellites and ballistic missiles.

3.3.1 Satellite Ground Trace

The satellite ground trace is the locus of points described by the

satellite sub-orbital over a given time period A t = Z: Ati. Given a

1
satellite's position, the satellite sub-orbital 1is defined as the point of

intersection of the line through the satellite position perpendicular to the




reference ellipsoid with the ellipsoid. Given a set of A ti from epoch TE'

and the orbital element set, (T , @ e, i, v M, n.%, T)+ the set of
geocentric ground trace points to be plotted may be generated by the methods
of Section 3.2.4.2 followed by the transformation of Section 3.2.2.3 for each
At

i°

Dividing the time span desired into equal time segments is instructive in
that the ground distances drawn indicate the proportion of time each area of
the earth is under surveillance. The set of ground trace points generated
this way do not produce smooth curves for non-circular orbits, however. The
following algorithm generates a set of Ati such that the ground coverage
distances plotted will be approximately equal in length.

The true anomaly, v, is the central angle from periapsis to the
satellite's position. Obviously, dividing 360° into N equal true anomaly
angles implies that equal ground distances will be covered on a sSpherical
earth (See Figure 3-5). However, the expression which will generate the Ati
is in terms of the eccentric anomaly E. The eccentric anomaly is defined as
the angle (measured from the center of the earth) between the periapsis and
the intersection of the circle circumscribing the orbit ellipse with the line
through the satellite perpendicular to the semi-major axis (See Figure 3-6).

The relationship between v and E is given on page 39 in reference [2] by

<

_ 1 +e E
tan g =T B2

hV]

and the A ti is given on page 1 of the same reference by

3-18




SISdvid3d

§90URISTQ punoay Tenbj aonpoad o3 sorTewouy ona) Tenby Buysn g-¢ aan3ry




Figure 3-6 Definition of Eccentric Anomaly

3-20




i

The algorithm proceeds as follows:

1. Find the eccentric anomaly of the satellite at the start time by the
method of Section 3.2.4.2, 0° < E < 360°

2. Calculate the corresponding true anomaly as

1+e

-1 E
v°=2tan [ 1—_-3tan§]

3. Let A v be the increment of true anomaly. Then the table of true
anomalies may be generated as

\)-\"1‘ . -
1_°+1 AV.i-OtON.

4, The corresponding table of eccentric anomalies is generated as

1 1 -e ivi
Ei=2tan [—1—-;-é-t.an—2—].i=0toN

5. Finally, the tables of 4 t, may be calculated as

E, - E E. - E E; - E
2 (——l_if_£:l - e sin - 3 1=1 os -2 5 i'1)

At1= n

for i = 1 to N,

3.3.2 Ballistic Missile Ground Trace

The ground trace of a ballistic missile defined by (TE. 0, e, i,0)
launched at location L (X, ¢, h) requires the algorithms described in this
section. If the predicted point of impact is known (say from TSATS), then the

3-21




beginning and end points are known. If the predicted point of impact is not
known, then it must be estimated as follows.

As explained in reference [1] on pages 279 - 297, the orbit of a
ballistic missile is an ellipse in its non-powered phase. Due to propulsion
forces and atmospheric and gravitational effects, this is not true before
burnout and after reentry (See Figure 3-7). However, the free-flight
trajectory is symmetrical, and half of the free-flight range angle, ¥, lies on
each side of the semi-major axis. Since no time of burnout and time of
reentry information is available, the assumption is made that the complete
ballistic path is a part of an ellipse symmetric about the semi-major axis.

The true anomaly, V_, is calculated to the point of launch. The true
anomaly, VT. is ecalculated to the predicted point of impact (if known), or to
be 360° - v otherwise. Values for the semi-major axis and mean motion are
calculated, appropriate A ti are calculated, and then the method of Section

3.2.4.2 followed by the transformation of Section 3.2.2.3 is used to generate
the ground trace points.

The launch point true anomaly \’s is calculated as follows. Let LP be

_Q
the vector in ECI coordinates of the launch point. LP is calculated by the
—>
transformation of Section 3.2.2.2. Let P be the vector in ECI coordinates of

9
periapsis. As defined on page 77 in reference [3],

cos wcos N- sin O sinw cos i
P =}coswsin g+ sin S cosw cos 1
> sinw sin i

Then,

3-22




PERIAPSIS

Figure 3-7 Ballistic Missile Trajectory

SR 3-23




:
3
b
?
v
¢

2 (-’
1 -ecosv

cos V= ecosF =T in reference {1], may be solved for the semi~-major axis a

and the eccentric anomaly at the launch point Es.

The equations on page 20, r =
e - cos E

and page 187,

JLPl(l - e cos Vv )
I

b

3 e+cosv

Eg = cos %)

(1 + e cosVs

The ballistic missile element set may be extended to an orbital element set by

letting M = Es - e sin Ea and n = ﬂg. where u is the gravitational
\l a

constant of the earth, and by setting % and %% to zero.

Defining A n to be (ns - "t) / (N - 1) if the predicted impact point is
known, and to be (360° - 2Vs) / (N - 1) otherwise, the A ti are calculated in
the same manner as Section 3.3.1, steps 3 to 5.

3.4 RADAR RELATED PROBLEMS

The radar position (X, ¢, h) and coverage limits (R, Am' A". Em' E") are
stored in the SABERS data base for each radar. The coverage limits are the
range R, minimum and maximum azimuth Am and A". and the minimum and maximum
elevation, Em and Ey. As shown in Figure 3-8, azimuth is measured clockwise
from local north, and elevation is measured from the horizon, positive above




re 3-8 Radar Coverage Limits

Fi




the horizon and negative below the horizon. The azimuth 1limits are
0% < A < 360° and the elevation limits are E, < E < 90°. 1In practice, E is
limited to values greater than five or ten degrees due to refraction effects.

3.4.1 Radar Coverage Plots

Elevation information is lost in graphically representing extents, and
the range information is distorted. This is due to the method chosen to
represent the radar coverages, which is to project points on the radar beam
periphery onto the surface of the earth. The set of points to be plotted is
projected from ECI coordinates by the transformation of Section 3.2.2.3. The
set of ECI points is generated by the following algorithm.

In the local topocentric coordinate system, the unit vector defined by

e sin A
the azimuth is (n} = (cos A) , for any azimuth A. Using the transformation
u 0

matrix G described in Section 3.2.3, this unit vector in the ECI coordinate
X e

system is X = (y] = GT (n) . The point on the radar beam at range R + A R
> z u

for any azimuth in ECI coordinates is then P = L + (R + 2 R) X, where L is
> > > >
the radar site position in ECI coordinates obtained by the transformation of

Section 3.2.2.2.

In order to show the effect of the curvature of the earth on the radar
coverage picture, only 3/5 of the points to be plotted are calculated at each

A A with range R, For A = Am and A = AM' 1/5 of the points to be plotted are
calculated by letting A R vary from -R to O.

3.4.2 Radar Coverage of a Satellite

Given a particular geometry, it is straightforward to determine if a
satellite is under radar coverage by comparing the actual range, azimuth, and
elevation to the satellite with the radar limits. As shown in Figure 3-9, the

3-26




azimuth and elevation angles are defined in the local topocentric coordinate

system by
El = sin” (&)  —90° < E1 < 90°
Az = tan~ ¢ g‘; ) 0°< Az < 360°

Se
where (Gn) is the direction cosine vector from the radar site to the satellite
du

position.

In ECI coordinates, the range P to the satellite from the radar is

2

2 2
P=lx - =.d?x - x)% e (g - Y2 e (2 - 2)
3 3[ S R § R S R

where X is the satellite position calculated by the method of Section
S
3.2.4,2 and X is the radar position calculated by the transformation of
>R
X -X

.. §x1 55 >R
Section 3.2.2.2. The direction cosine vector is then {(§y| = ~———— in ECI

5z P
coordinates. By the transformation matrix G of Section 3.2.3, we may then
Se §x
calculate the local topocentric direction cosine vector as |6n| = G|&8y]|,
Su Sz

and calculate El and Az.
To graphically represent the radar coverage for which the satellite is

visible, the method of Section 3.4.1 may be used. The azimuth angles at
tstart and tend replace the radar limit angles Am and AH.

3-27

VLR

e Fik g g i

SR AT Ve i e 657 e AR




------—---,t

coﬂuwcwme oT8uy UOTIPASTT PUP YNWTZY G-€ 2an3Tg

3

~ n‘u'e _

et

D&

3-28

o




3.4.2.1 Time of Coverage Calculations

If the satellite is in coverage at times ti and tJ. and out of coverage
at times ti-1 and tj+1' it is known that the satellite first becomes visible

at some time between ti_1 and ti'

between tj and tj+1' These exact times are approximated by ti-1 and t3+1' L 1)

and passes out of coverage at some time

that the satellite is considered under radar coverage over the larger time
interval. Greater accuracy may be gained by using a smaller time interval.

3.4,2.2 Exceptions to Coverage Checks

Checks for coverage need not be performed for those geometries for which
the ground trace of the satellite is in the opposite hemisphere from the radar
site (see Figure. 3-10). No checks need to be performed at all if the
satellite's minimum height above the reference ellipsoid (that is, at
periapsis) is larger than the radar range limit R (see Figure 3-11). This
means there is no check if R < a (1 - e) - ags for an orbit with semi-major
axis a and eccentricity e and earth semi-major axis a, -

3.4.2.3 Pass Through Coverage Check

In the discrete method of Section 3.4.2, it is possible for the satellite
to be reported as out of coverage, when for some time interval inside the time
step size the satellite may have passed through radar coverage (see Figure 3-
12). As implied by the terminology "passed through,"” this condition may be
checked for by comparing the relations between the actual valués and the
limits at the two discrete time points whenever the time step size is much
smaller than the period of the satellite, TP' If the elevation angles
measured at time ti and t1+1 are both less than Em' or both greater than EH'
then there has been no pass through. Similarly, if the two measured azimuth
angles are both 1less than Am or greater than A". there has been no pass
through., Finally, if the ranges measured at time ti and t.“1 are both greater
than the range limit, and the satellite has not passed through periapsis, then

there has been no pass through. i

3-29 ,




, SATELLITE

/r \’\ Y RADAR

Satellite may be visible ]
it the suborbital is in the ]

same hemisphere as
the radar.
1

Satellite can not be

|

I

visible if the suborbital |
is not in the same |
hemisphere as the radar |
/

|

|

]
/
/
I

—

\
\
A
\
\
\
\
\
\
\
\
\
\
\
|
\
\
\
\
\
\
\
\
\
\
\
\
\
\

—
.
——

Figure 3-10 Hemisphere Checking

3-30




(e~ )e = s|sdejied 1

®e-(0-1)e=ujw I

SISdviddd

3-31

Y] uvavy K

uw 1>y 311M134VS ﬂ

a8ea9A0) a03 JuUSTOTIINSul a8uey Jepey TT-€ SanITJ




a8eaaa0) depey ydnoayl surssed 93TTILIES Z1-¢ aanidt (

._._.vvv_u by

é

ALT3LVS “

yvavy A




The satellite may pass through radar coverage when the ground trace
crosses from the different hemisphere to the same hemisphere as the radar
site. This means that the check values are calculated for the first and last
times for which the satellite is in the opposite hemisphere.

3.5 PHOTO RECONNAISSANCE PROBLEM

The satellite in orbit may carry a camera mounted in such a position that
a portion of the earth's surface will be under reconnaissance coverage. In
SABERS, the camera aperture is defined by the field of view angle ¥, Figure
3-13. The camera mounting is defined by two angles: the azimuth (from local
north), Az, and elevation (from down), El, both measured from the axis of the
cone. If the elevation angle is zero, then the cone axis intersects the
ground trace point of the satellite. This follows from the definition of the
satellite sub-orbital in Section 3.3.1.

3.5.1 Photo Recconaissance Plots

Drawing the coverage of the camera requires the solution of the
intersection of the oblique cone with the reference ellipsoid. The algorithm
is developed for two cases: El = 0 and E1 # O.

3.5.1.1 Case 1: El = O

As described in pages 4-U42U to 4-U25 in reference [6] the intersect.on of
the ECI vector

] (3’2)

¥ >

"
v o
Vo

where

3-33




—

Figure 3-13 Camera Field-of-View and Mounting Angles

3-34




e o

X
X =(y) 1s the vector to the point of intersection
i z

Sy
S S,} 18 the position vector of the satellite
>

S

p = slant range

= P2 is the line of sight vector

v o

(see Figure 3-14)

and the reference ellipsoid

[ \M)
[[M]
LM

(3-3)

»®
® |t
+
O’IN
o N
v
-

yields the two solutions for the slant range:




uoYILTNOTED o8uey Juels hl-€ san814

a2 A



(3-4)

2 2
ae be
2 2 2
s;{+S55 s
C = ‘22+—§-1
ae be

where a, is the semi-major axis of the earth and be is the semi-miror axis of
, the earth., The minimum of the two roots is used to ensure that the solution

£ X is the point in the same hemisphere as the satellite ground trace.

L >

] At time t, the satellite position vector S jis known by the method of
>

Sectiorn 3.2.4.2. As mentioned in Section 3.5, the cone axis is coincident
with the ground trace vector, In the local topocentric coordinate system, the

e 0
cone axis direction cosine vector is then (n) = ( 0) . The ECI cone axis
u -1

~

direction cosine vector R is then

-~ 0
' R = GT(O)v
) -1




where G is the transformation matrix defined in Section 3.3. Given any unit

vector U normal to R , the line of sight vector P on the surface of the cone
>

is then defined by

P=z=Rcos %+ Usina
>

where o = % is the angle of the cone measured from the cone axis (see Figure
3-15).

Many such vectors U may be generated by considering the local topocentric

e sin Ai
vectors (n) = {cos A1 centered at the satellite position where the A1
u
0
constitute a set of azimuth angles from Aj = 0° to Ay = 360°, measured from

north. The set of ECI vectors normal to R is then

sin Ai

T
i"G COS Ai .

0

u

Since S8 and P are known, the slant range p may be solved for by the method
2> >
of Section 3.5.1.1, upon which X 1is known in ECI coordinates. Then X may
>1 >4
be plotted in geocentric coordinates by the transformation of Section 3.2.2.3.

If P does not intersect the earth, then 82 - UAC <0 and the roots of the

>
quadratic equation (3-4) will be complex. In this case, consider the line of

sight vector P
>

3-38




Figure 3~15 Definition of P = Rcos a + U sin «

fe e e v W m = w ok e

Lattinics A BB L s! sbidnsal e i

e s e e




= Rcos B+ U sin 8

P
>

such that P is tangent to the earth surface. The angle B such that P is
> >

tangent may be solved for by setting the discriminant 32 ~ YAC = 0. Define
the earth ellipsoid equation (3-3) as

x2+y2+D22=az.with D

U‘I m'
® o N

Then by substituting (3-2), we have

2

2 2 . 2 _
(S1+D P1) +(32+p Pz) +D (S, +0 P3) = a,

3
or

2 /2 2 2
o (P1+P2+DP3)+D (251P1+282P2
)+S§+Sz+bsz-az=0

+2DS 2 3

3 P3

where S is constant (the satellite position) and 4
>

P=Rcosf + Usin B
>

Letting

3-40

WrasA e T e




2

52 52
A=P]+P;+D Py,

and
_ <2 2 2 2 5
C-S1+82+DS3-—ae. i
i
we want :
B2 - 4AC = O

That is, we want by substitution of A, B, and C,

' 2 2 2 2
4 (S, Py +5, Py +DSP) 4 (Py+P, " +DPYC= 0
or
2.2 o252 . pn2 &2 p2
2% 2P +D? sSSP+ 28,8, P Py+2DS Sy Py Py (3-5)
2 2 2
2DS, S, PyPy-CP -CP,~CDPy= 0

Noting that P = R cos8 + U sin B, we find
>

3-41




e i e et gt - weemmeseem—
» .

cos® B+ 2 ry u; cos B sin B + uf 2

Pi PJ = rirJ cos2 B+ (r1 uJ + rJ ui) cos B sing + u, uJ sin2 B .

. ( P2=r

2
- i 1 sin

This means that equation (3-5) becomes, by substitution,

X cos? B +Ycos Bsin B+ 2sin? B =0 (3-6)

where

_ 2 2 2
X = V1x~1 + V2r2 + V3r3 + vur1r'2 + V5r1r3 + V6r2r3

L]
[

= 2V1r1u1 + 2V2r2u2 + 2V3r3u3 + Vu(r1u2 + r2u1)

+

Vs(r1u3 + r3u1) + V6(r2u3 + r3u2)

2 2 2
Z = V1u1 + V2u2 + V3u3 + Vuu1u2 + Vsu1u3 - V6u2u3

2

-! v, =5 ¢
2
o = 2 _
s V=D @s% -0
| v,=25,5,
‘ Vs=2D5, s,
f V6 =2D 32 53
[
-
|

Dividing (3-6) by cos

8 , we have a quadratic in tang




2

Z2tan® B + Ytan B + X =0

or

No solution for B exists if Z = 0 or Y2 < 4X2. This will occur if the R x U
plane does not intersect the earth.

Choosing the larger of the two roots to get positive 8, find

cos B = (1 + tan® 8)~!
sin 8 = tan B cos 8.
This gives

P =Rcos B +UsinB

>T
where
T,
P = PT is the line of sight to the point of tangency
>T 2
P
T3
Therefore,

3-43

R T Wi At 3 Sl SR A S

[




2 2
PT1 + PT

o
(]

+D Pg
2 3

B=2 S1 PT1 + 2 52 PTz +2D S3 PT3

and

The resultant X may be plotted in geocentric coordinates by the
>T

transformation of Section 3.2.2.3 l

3.5.1.2 Case II, E1 # 0

-
Let R be the vector along the cone axis. In the local topocentric
coordinate system,

= | sin El cos Az

sin El1 sin Az
) -cos El

0
-
Note that if E1 = 0°, R =| 0]as before.

-1

It 1is desirable to define two mutually perpendicular vectors

-t -
perpendicular to R to form a new coordinate system with R as one axis.
Define:




ey
¥ e
ER o
]
3
w

— i+r,k
E' R x N > >
= =5y r2 T3} ¢
-t 2
R xN 1, ry+ry
and
i 3 K
> > >
v -r r
N'__ng = 3 4-1'11 0 ! +n$
v =t 2.2 2 .2
IE xR I 1"3-»1»1 1'-3+r1
2 2
r,r,il ¢+ @;+rl) j-r,r,k
12_> 1 3_> 3_>

2
\[:frg + (r? + 1'~§)2 + rg r§

1 0
] ]
noting that if El1 = O, them E = (g): E and N =(1)= N. Now define
0

-t

] ]
U,=Ncos 8 +Esin 8, for 0° < 9i < 360°, to provide a rotating system of
cone surface rays similar to before.

- ]
As before, the vectors may be expressed in ECI coordinates as R = Gl\i

- L
and U = GTﬁ , for the transformation matrix G defined in Section 3.2.3, and we

may calculate P=Rcosa+U sina for the line of sight vector in ECI
coordinates.

At this point, it is convenient to find the U vector such that P is
- 0 -
contained in the plane defined by R = GT Ojand U, This is simply

3-45




The point X may then be found by the method of El1 = 0, where the field of view
angle o 1is replaced by £.

3.5.2 Special Conditions

There are special conditions to be considered when the cone axis does not
intersect the earth. There are no computational problems when the cone axis

does intersect the earth.
3.5.2.1 Determining If the Cone Intersects the Earth

As shown in Figure 3-16, the cone may not intersect the earth or may
envelop the earth. Since the algorithm described in Section 3.5.1.2 will
return all the tangents, only the case of no intersection must be detected
independently.

The cone will not intersect the earth if the angle between the cone axis
and the vector to the center of the earth, 6, is larger than the field of
view angle, o, and the angle to the tangent vector, B, from the ray to the
center of the earth, i.e. 6 >a + 8 ,

Let R be the cone axis vector in ECI coordinates, and S be the satellite
>
position derived by the method of Section 3.2.4.2, Let P be the vector
>T

i



aand1d
oue) 91-%
gae3ul ION ge0q 2u0d B
309
yaael ayd

g+0¢0

3-u47

i
:
4

W




tangent to the earth's surface,

Then
P .S
cos B = 21 2
P IS
>T||>
and a
sin B = \]1 - cos? B
also,
R+ =S
cos 6§ = 2
s
>
There  is no - intersection if 6 > a + B, that is, if

cos g K cosa ¢cO0S B o sin g sin B,
3.5.2.2 Removing Excess Points

As shown in Figure 3-17, some of the points of tangency should rot be

plotted in case the point of tangency is not in the cone coveraze. This is

detected by noting that the angle, 6, between the tangent ray P and the conre
axis ¥ is larger than the field of view angle a ., That is:




(a)

CAMERA
VISIBILITY
CONE

POINTS OF
TANGENCY

EXCESS CONE EXCESS
TANGENTUNTERSECTS|TANGENT
POINTS EARTH POINTS

3
S
<

(b)

RESULTANT
COVERAGE
AREA
EXCESS ~ EXCESS
nsuovs/o/ \REMOVED

Figure 3-17 Points of Tangency Not in Cone Coverage




cos 6 < cosa

or

cosa > 4 F
R

=Thiad

3.5.3 Time of Coverage Calculations

Approximations are performed in calculating the times of coverage of a
point of interest on the ground by the reconnaissance satellite. These
approximations result in the algorithm producing times of coverage that span
the actual times of coverage. At each time step, the points of intersection
may be determined by the method of Section 3.5.2. The figure determined by
these points of intersection is approximated by a circle on the surface of the
earth circumscribing the figure. The center of the circle is the average of
all the points in the figure, and the radius of the circle is taken as the
largest of the great circle distances from the center point to the figure
vertices, The great circle distance formula between two points (Al, o190 h1)
and (AZ. 050 hy) is

-1
r=a, cos = (sin ¢, sin ¢, + cos ¢, c08¢ , cos (}; - 1)),

where a, is the semi-major axis of the earth.

3.5.3.1 Pass Over Coverage Check

To check against coverage between the discrete time steps, the following
method is used. Let the two figure center points be CP1 = (A1' o1 .h1) and

CP2 = (AZ' 02° h2). Calculate the two radii of coverage ry and ry with the

3-50




great circle distance formula. Let r = max(rI. '2)' It is necessary to

compare r with the minimum distance from the center point trace to the ground
Pz .

point of interest, (Ap. ¢p' hp)

From spherical trigonometry, (See Figure 3-18),

cos a = sin ¢, sin ¢, + cos ¢, cos ¢, cos (A1 - Xz)

= - Ao A
cos b = sin ¢1 sin ¢p + cos ¢1 cos ¢p cos ( 1 p)

Ao A
cos ¢ sin ¢2 sin ¢p + cos ¢2 cos ¢p cos ( 2 p)
and

cos ¢ = cos a cos b + sin a sin b cos B (3-7

where B is the included angle between sides a and b. It is desirable to find
0 < Y £ 1 such that

1

c = cos” ' (cos ( Ya) cos b + sin (Y a) sin B cos B)

| is minimum.




a8easa0) oouessTeUUoddy gT-¢ FINITI
S
d
|
|
“
|
R
|
|
\
-\
\
\

\

3-52

[ e




-1
Let dd: S Lcc;sy (u) ( =sin (Y a) cos b + cos (Y a) sin b cos 8) = O.

Since
-1
dcos™ (u) _ _.q _ 2:1/2
K] z ~(1 = u) £0,
we have
-3in (y a) cos b + cos (Ya) sinbcos B = 0
sin ( Ya) cos b = cos ( Ya) sin b cos B

tan (.va) = tan b cos 8

Y - 1;_gn'1 (tan b cos B)
a

.
let a = Y afor 0<y <1, and then find

.
"

-1 ' '
be cos (cos a cos b + sin a sin b cos B)

with be = earth semi-major axis. It is not necessary to find 8 explicitly,
since

cCOS ¢ -~ cOS a cos b
sin a

sin b cos B =

1

from (3-7). Also, if a =sina =0, let d = be cos ' (max {(cos b, cos c)).

If d {r, then the ground point is considered to be under coverage by the

reconnaissance satellite.

TR TTSTTIT T S ST e




3.5.3.2 Coverage Time Interval Accuracy

The set of all times such that d < r for time pairs (t1_1. ti).
(tj. tj+1) is reported as start, end times (t1_1' tj+1). This is similar to
the method described in Section 3.4.2.1. However, there is a limit to the
accuracy of this algorithm, due to approximating non-circular figures with

circles. To ensure that the error is on the side of caution, the d calculated

a
in Section 3.5.3.1 is multiplied by 155 £ 1,0034% as a model correction
e

factor.

3.6 THREAT WINDOW ALGORITHM

The determination of launch windows (times at which a payload may be
launched from a site to intercept a target satellite in its orbit) is based on
LPRE, a launch prediction algorithm described on pages 2-11 to 2-17 in
reference [7].

3.6.1 Existing LPRE Formulation

The -empirical formulas provided in the reference are functions of the
target orbital period, Tp. and the phase angle ¢ . The phase angle is defined
as the angle at the center of the earth between the target satellite position
and the launch site position at the time, tp. when the site is coplanar with
the orbit.

Letting to = window open time, tc = window close time and tn = nominal
launch time, the following regions have been identified:

3-54




Region 1:  0° < ¢ < 60°

cr
"

60° - ¢
t._ z¢t_ T
¢ P 360° P

L]
)+ 05T, ¢ < U2

t > 42° :
p ¢ :

Region 2: -60° ¢ ¢ <o°

- T ’ - o
tp 05 b W2" < ¢
O
t _60"+ ¢ T

P 360° P

(o]
tc =t + %+ 180 T
P 3600 P

c*
"

n tp + .05 Tp

Region 3: -180° ¢ ¢ < -60°

o
to =t + ¢ _+ 60 T
P 360° p

A ..._i_LJ_aP:T
P 360° P

o
]

to + tc
n 2

cr
"

g T T T AW TR g T " e " e N aetcs v - s o
N ’ H : s Kl and R TP, R TR TTAw o g R
> - e .- P PN - - R . . PR R

3-55

g e s E. B . I




. . . v
s

rr h’” .

B R T wp»‘» Ty — EENENEI Lo S

Region 4: 60° < ¢ < 180°

not viable

3.6.2 Determining Time of Coplanarity

Finding tp. the time of coplanarity, is accomplished in an iterative
fashion. There will be a maximum of two times of coplanarity in one day, and
a minimum of no times of coplanarity (in case the launch site latitude is

larger than the orbit plane inclination). Therefore, there are at most two
launch windows for a given launch site and orbit plane in one day.

For launch site (A, ¢, h) and satellite position S and velocity V, at
‘ > >
current time, t, in seconds since midnight, define the ECI coordinates of the

launch site as

G1 cos ¢ cos ©
z G1 cos ¢ sin © (3-8)

62 sin ¢

N <

where © 1is the hour angle of section 3.2.2.1 at ¢,

a
G, =h «+ e

N1 - e - 2 sty

2
ae(1 - f)

1 - (2t - t5)sin?y

62 2= h«+

3-56

e o e




3, = 6378.16 km, = semi-major axis of the earth
f= 1
298.25
(see page 115 of reference (3]), and denote the orbital plane as
? ] y ]
AX+BY+CZ4+D =0 (3-9)
when
S xV
(A, 8',¢') e 2—2 and D' =0
S xV
> >

Substituting (3-8) into (3-9), we have

A ¢cos8 +Bsin® +C =10 (3-10)
for

A=A G cos®, Bz G, cosé,and C=C G,sind,

Solve for the true roots of (3-10) from among the four solutions to

- 6e cos= ZACE 33!1\2 2 B2 - 2
. A + B2
o be sin-1 zpc 2 m\JaZ. 82 - ¢2

LS A2+Bz




and for each true root, find ti (time since midnight) as

i do
dt

BG = Greenwich hour angle at midnight

and

a

6
o earth's rate of rotation

o

Using ti as the current time, adjusted values for S and V may be used to
> >
refine the estimate of ti until

k k+1
Iti -t l <€

Then the phase angles ¢i for each tp are calculated as

S L

-1, >i 21

¢1 = cos ¢ )

S
>1

L
>1

where S and L are the ECI positions of the satellite and launch site at
>4 >1

time ti.
3.7 MAP PROJECTIONS

In this section, the formulae required to perform the SABERS map drawing
functions will be presented. These formulae permit the translation of a point

3-58




or series of points on the earth's surface, represented by latitude and
longitude, to X and Y values for plotting on a Cartesian coordinate system.

There are two basic steps in this conversion. First, a scale factor must
be calculated. This value is based on the size of the map display or on a
specified map scale. Once the scale factor has been determined, any number of
points may be translated for display.

The equations below assume a standard Cartesian coordinate output is
required; that is, the origin of the display surface will be in the center,
and X and Y values ma& be positive or negative. The SABERS disblay assumes a
coordinate system with the origin at the lower left, and only positive values
of X and Y are acceptable. Therefore, a simple offset value is subtracted
from the equation results to yield the proper SABERS coordinates.

Mathematic symbols and their meanings are shown in Table 3-1. Valid
values for latitude are:

-90° ¢ , < 90°

Valid values for longitude are:

-180° < , < 180°

The formulae described were taken from reference [9].

3.7.1 Scale Factors

The following equations are used to calculate the scale factors for the
projections listed.

3-59




P - SR NP " SRy Bauis ORI

Table 3-1 Mathematic Symbols

SYMBOL DESCRIPTION UNITS
?f Ec The eccentricity of the earth —— t
ER Angular distance from point to map center point radians f
i; i An intermediate calculation value -—— ]
M Map radius for orthographic projection inches :
R Radius of the earth inches %
S Scale of map at true scale latitude inches/inch g
X Abcissa of translﬁted point inches Z
. X, . Range of X values (width of map) inches
X; Scale factor in X direction inches
b Y Ordinate of translated point inches
| Y. Range of Y values (height of map) inches
Ys 4 Scale factor in Y direction inches
u Longitude of point radians
g¢ Longitude at map center point radians
b Range of longitude (absolute value of radians

eastmost longitude - westmost longitude)

p Latitude of point radians

;, -! o¢ Latitude at map center point radians

1¥ : Po Co-latitude at point (1/2 - p) radians

- ; Pt Co-latitude of center point (n/2 - D¢) radians
o o Range of latitude (northmost latitude - southmost latitude) radians {

: pt True scale latitude radians

: ¢ Azimuth angle from point to center radians

3-60




MERCATOR, MILLER, AND SINUSOIDAL

2
.. (1.0 - €2 sin‘p 1172

cos P

t
X, = R/(iS)
Ys=xs
EQUIRECTANGULAR
x X
s‘ur
Yr
Ye =50
r
ORTHGRAPHIC
stmrszxs

3.7.2 Projection Equations

The following equations are used to calculate the projections listed.

MERCATOR

X=[u-U¢] * X

E 1 -E,. sin 1,1
= 1n tan [45° _LpJ_ =< . c e
i n |-"5"2]*2 1“1+Ecsinlol

i assumes the sign of p,

Y=1Y
)




[u - u’] - Xe
i= g In (tan (45° + 215391)]

i assumes the sigh of o

EQUIRECTANGULAR

X « X

[u—u¢] s

Y

[o-p¢] i

SIMUSOIDAL
X = [u—u¢] - cos p-'Xs
Y =2 P . Y‘

-

ORTHOGRAPHIC

ER = co.s‘1 [cos pc¢ cos P, + sin Ped sinp cCOs '(u - u¢)|]

! Hote: This .equation ir the CAM documentation is marred by two errors,
This is the correct equation,

!
) -1 €OSP o4 ~ COS ER cos P
1 = ¢os

sin ER sir. pc¢




x:si.nER.si.n¢'xs

Y:sinER-costb-Ys




(13

(2]

(31

[4]

(51

(61

(71

(8]

(9]

BIBLIOGRAPHY

Bates, Roger R., Donald D. Mueller, and Jerry E. White, Fundamentals of
Astrodynamics, Dover, 1971,

Battin, Richard H., Astronautical Guidance, McGraw-Hill, 1964,

Escobal, Pedro Ramon, Methods of Orbit Determination, John Wiley and
Sons, 1965.

Fliegal, Henry F. and Thomas C. Van Flanden, "A Machine Algorithm for
Processing Calendar Dates," Communications of the ACM, Volume II, Number
10, October, 1968.

Herrich, Samuel, Astrodynamics, vol. 1, Van Nostrand Reinhold Co., 1971.

Prisling, R. H., W, F. Rearich and D. C. Walker, MPP Mission Planning
Program, The Aerospace Corporation Report, SAMSO-TR-74-188, June 15,
197“.

Sanders, Dr. Jon, Threat Window Study PAR Proposal for Contract RFP
#F30602-79-R-0006, January 23, 1979.

Sonalkar, Dr. Ranjan, Roger L. Dygert, and Dr. Probal Sanyal, Real Time
Adaptive System for the Coelosta: Optical Tracking Mount, PAR Report
76-32 for contract #F30602-75-C-0744, November 1976.

CAM Cartographic Automatic Mapping Program Documentation 5th Edition, GC
77-10126, June 1977.

3-64




FLECG:
USER’S MANUAL

University of Oregon Edition

This manual corresponds to version 22 of Flecs.
(Revised October 1, 1975)

Author: Terry Beyer

Address: Computing Center
University of Oregon
Eugene, Oregon 97403

Telephone: (503) 686-u4416

Published by: Department of Computer Science
University of Oregon

Neither the author nor the University of Oregon shall be
liable for any direct or indirect, incidental,
consequential, or specific damages of any kind or from any
cause whatsoever arising out of or in any way connected with
the use or performance of the Flecs system or its
documentation.

This manual is in the public domain and may be altered or
' reproduced without the oxplicit permission of the author.
’ Please communicate any errors, ambiguities, or omissions to
the author.

4-1




Acknowledgements

The author is indebted to many people for assistance of
one form or another during the course of this project. Mike
bunlap, Kevin McCoy, and Peter Moulton deserve special thanks
for many helpful and fruitful discussions, suggestions, and
encouragements. I am grateful to my wife, Kathleen, who
assisted in many ways including shielding me from the harsh
reality of JCL and 360 Assembly Language. Text preparation
was adroitly accomplished by Marva VanNatta, Allyene Tom,
Diane Lane, and Kathleen Beyer.

This project was initiated while the author was working
under a grant provided by the O0ffice of Scientific and
Scholarly HKesearch of the Graduate School at the University
of Oregon. Work on the project has also been supported in
part by the Department of Computer Science and by the
Computing Center of the University of Oregon.




—

TRy it vy, eweas b et Ty B e T

TABLE OF CONTENTS

1.0 Introduction

L] L] L L] L] L L d . * L4

2.0 Retention of Forﬁran Features |
3.0 Correlation of Flecs and Fortran Sources 3
4.0 Structured Statements | |, . . ., . . . . . . . ¢ . ... &
5.0 Indentation, Lines and the ﬁisting e e s o s s s e s e e . b

6.0 Control Structures

L] L] . L . L4 L] . L4 L] L] L * L] * L] L] L] e 8

6.1 Decision Structures , , , , ., ., . .., .. .. 8
6 . 1 . 1 IF e & 8 o * & e o e+ s e o o o 9
6 4 1 . 2 U“LESS [ ) . . . (] e e ¢ o o o 9
6.1.3 WHEN...ELSE , , , ... ... 10
6.1.4 CONDITIONAL , , . ... ...1
6‘ 1 '5 SELECT s o e e o s o o e o o oo 12
6'2 Loop StrUCtures e € ¢ & o & s & o 0 o o 2 o o 13
6'2' 1 Do * _® . ¢ e o o & o o o o 13
6'2'2 wHILE . "« & o o o o o o o 1“
6.2.3 REPEAT WHiLE | | © . . . . . . 1a
6'2° 4 U"TIL ® 9.8 8 e 6 o & o o e @ 15
6.2.5 REPEAT UNTIL , , , ., ., .. . 15

7.0 Internal Procedures

8.0 Restrictions and Notes

9‘0 Error’ ¢ & & s 6 e o & o e & & o & o & o e o ov e & o e e o 21

10.0 Procedure for Use

10.1 On the PDP-10

L] . L4 L] [ ] L] L L] L] L] L ] LJ . L] [ ] L) . L] L ° 2.

] [ . . L [ ] [ ] [ ] . L) L] L) L ] L L ] 2“

- 10.2 On the IBM /360 , ., . , ., ., .. ......26
10.2.1  WATFLECS | . | 26
' 10.2.2 Standard Flecs .

Appendices:
A. Flecs Summary Sheet
B. Available Documentation Concerning Flecs

4-3




1.0 INTRODUCTION

Fortran contains four basic mechanisms for controlling program
flow: CALL/RETURN, IF, DO, and various forms of the GO TO.

Flecs is a language extension of Fortran which has additional
control mechanisms. These mechanisms make it easier to write
Fortran by eliminating much of the clerical detail associated with
constructing Fortran programs. Flecs is also easier to read and
comprehend than Fortran.

This manual is intended to be a brief but complete introduction to
Flees. It is not intended to be a primer on Flecs or structured
programming. The reader is assumed to be a knowledgeable Fortran

programmer.

For programmers to whom transportability of their programs is a
concern, it should be noted that the Flecs translator source code
is in the public domain and is made freely available. The
translator was written with transportability in mind and requires
little effort to move from one machine to another. Those
interested in moving Flecs to another machine or in having their
own copy of Flecs should contact the author.

At OUregon, Flecs is implemented on both the PLP-10 and the IbM
$/360, The manner of implementation is that of a preprocessor
which translates Flecs programs into Fortran programs. The
resulting Fortran program is then processed in the usual way. The
translator also produces a nicely formatted listing of the Flecs
program which graphically presents the control structures used.

The following diagram illustrates the translating process.

Flecs Flecs Translate
Source Translator Fortran
Progranm Source
Indented To
Listing - Fortran
Compiler

4=4




2.0 RETENTION OF FORTRAN FEATURES

The Flecs translator examines each statement in the Flecs program
to see if it is an gxtended statement (a statement valid in Flecs
but not in Fortran). If it 1is recognized as an extended
statement, the translator generates the corresponding Fortran
statements., If, however, the statement is not recognized as an
extended statement, the translator assumes it must be a Fortran
statement and passes it through unaltered. Thus the Flecs system
does not restrict the use of Fortran statements, it simply
provides a set of additional statements which may be used. In
particular, GO TOs, arithmetic IFs, CALLs, arithmetic statement
functions, and any other Fortran statements, compiler dependent or
otherwise, may be used in a Flecs progranm.

3.0 CORRELATION OF FLECS AND FORTRAN SOURCES

One difficulty of preprocessor systems like Flecs 1is that error
messages which come from the Fortran compiler must be related back
to the original Flecs source program. This difficulty is reduced
by allowing the placement of line gumbers (not to be confused with
Fortran statement numbers) on Flecs source statements. These line
numbers then appear on the listing and in the Fortran source.
When an error message is produced by either the Flecs translator
or the Fortran compiler, it will include the line number of the
offending Flecs source statement, making it easy to locate on the
listing.

If the programmer chooses not to supply line numbers, the
translator will assign sequential numbers and place them on the
listing and in the Fortran source. Thus, errors from the compiler
may still be related to the Flecs listing.

Details of line numbering are machine dependent and are given in
chapter 10. On most card oriented syatems, the line numbers may
be placed in columns 76-80 of each card. Other systems may have
special provisions for line numbers.

The beginning Flecs programmer should discover and make
special note of the details of the mechanism by which Fortran
compiler error messages may be traced back to the Flecs listing on
the system being used.




4.0 STRUCTURED STATEMENTS

A basic notion of Flecs is that of the gtructured statement which
consists of a g¢ontrol phrase and its ggope. Fortran has two
structured statements, the logical IF and the DO. The following
examples illustrate this terminology:

structured statement

r 1

control phrase scope

keyword specification

IF (X.EQ.Y) UsVeW

keyword specification

78] 30 I = 1,N control phrase
A(I) = B(I)+C structured
L(I) = I-K(I) scope statement

30 CONTINUE

Note that each structured statement consists of a control phrase
which controls the execution of a set of 2ne or more statements
called its scope. Also note that each control phrase consists of
a keyword plus some additional information called the
specifjcation. A statement which does not consist of a control
phrase and a scope is said to be a gjmple statement. Examples of
simple statements are assignment statements, subroutine CALLs,
arithmetic IFs, and GO TOs.

The problem with the Fortran logical IF statement is that its
scope may contain only a single simple statement. This
restriction is eliminated in the case of the DO, but at the cost of
clerical detail (having to stop thinking about the problem while a
statement number is invented). Note also that the IF
specification is enclosed in parentheses while the DO
specification is not.

In Flecs there is a uniform convention for writing control phrases
and indicating their scopes. To write a structured statement, the
keyword is placed on a line beginning in column 7 followed by its
specification enclosed in parentheses. The remainder of the line
is left blank. The statements comprising the scope are placed on
successive lines. The end of the scope is indicated by a FIN

statement. This creates a pulti-line structured statement.

4-6




Examples of multi-line structured statements:

IF (X.EQ.Y) 1;

U = VoW

R = S+T
. FIN
DO (I = 11”)

A(I) = B(I)+C

C = C®2,14-3.14
. FIN

Note: The statement number has been eliminated from the LO
specification since it is no longer necessary, r.ho end of the
loop being specified by the FIN.

Nesting of structured statements is permitted to any depth.
Example of nested structured statements:

IF (X.EQ.Y)
U = VeW
DO (I 3 1,“)
A(I) = B(I)+C
LC s C%2,14-3.14
FIN

R = S+T
__FIN

When the scope of a control phrase consists of a single aimple
statement, it may be placed on the same line as the control phrase
and the FIN may be dispensed with. This creates a gne-line
atructured atatement.

Examples of one-line structured statements:

IF (X.EQ.Y) U = VeW

DO (I = 1,N) A(I) = B(I)+C

47

S it e il




—. w B T T A T e o G R M | ATt A

Since each control phrase must begin on a new line, it is not
possible to have a one-line structured statement whose scope
consists of, a structured statement.

Example of invalid construction:
IF (X.EQ.Y) DO (I = 1,N) A(I) = B(I)+C

To achieve the effect desired above, the IF must be written in a
multi-line form.

Example of valid construction:

IF (X.EQ.Y) : oL
VO (I = 1,N) A(I) = B(I1)+C
FIN

In addition to IF and DO, Flecs provides several useful structured
statements not available in Fortran. After a brief excursion into
the subject of indentation, we will present these additional
structures.

5.0 INDENTATION, LINES AND THE LISTING

In the examples of multi-line structured statements above, the
statements in the scope were indented and an "L" shaped line was
drawn connecting the keyword of the control phrase to the matching
FIN. The resulting graphic effect helps to reveal the structure
of the progran, The rules for using indentation and FINs are
quite simple and uniform. The control phrase of a multi-line
structured statement always causes indentation of the statements
that follow. Nothing else causes indentation. A level of
indentation (i.e. a scope) is always terminated with a FIN.
Nothing else terminates a level of indentation.

When writing a Flecs program on paper the programmer should adopt
the indentation and line drawing conventions shown below. When
preparing a Flecs source program in machine readable form,
however, each statement should begin in column 7. When the Flecs
translator produces the listing, it will reintroduce the correct
indentation and produce the corresponding 1lines. If the
programmer attempts to introduce his own indentation with the use
of leading blanks, the program will be translated currectly, but
the resulting listing will be improperly indented.

4-8




I "

k
2

Example of indentation:

1. Program as written on paper by programmer.

IF (X.EQ.Y)

Us V+W

D& (I ==|,N)
A(T) =B (1)+C
C= C#2.14 =3.14
FIN

R=S+T
L—FIn

2. Program as entered into computer.

IF (X.EQ.Y)

U = VoW

DO (I = 1,")
A(I) = B(I)+C

C = C*2,14=3.14
FIN

R = S+T

FIN

3. Program as listed by Flecs translator.

IF (X.EQ.Y)
. U s VW
. DO (I = 1,N)
A(I) = B(I)«C
C = C#2, 143,14

. ...FIN
. R = ST
...FIN

The correctly indented listing is a tremendous aid in reading and
working with programs. Except for the dots and spaces used for
indentation, the lines are listed exactly as they appear in the
source program. That is, the internal spacing of columns 7-~72 is
preserved. There is seldom any need to refer to a straight
listing of the unindented source.

Comment lines are treated in the following way on the listing to
prevent interruption of the dotted lines indicating scope. A
comment line which contains only blanks in columns 2 through b
will be listed with columns 7 through 72 indented at the then-
current level of indentation as if the line were an executable
statement. If, however, one or more non-blank characters appear
in columns 2 through 6 of a comment card, it will be listed without
indentation. Blank lines may be inserted in the source and will
be treated as empty comments.

o ————— et 0 et i




6.0 CONTROL STRUCTURES

The complete set of control structures provided by Flecs is given
below together with their corresponding flow charts. The
symbol L is wused to indicate a logical expression. The
symbolj? is used to indicate a scope of one or more statements.
Some statements, as indicated below, do not have a one-line
construction.

A coanvenient summary of the information in this chapter may be
found in Appendix A.

6.1 Decision Structures

Decision structures are structured statements which control the
execution of their scopes on the basis of a logical expression or
test.




6.1.1 IF

Description: The IF statement causes a logical expression to be
evaluated. If the value is true, the scope is executed once and
control passes to the next statement. If the value is false,
contol passes directly to the next statement without execution of
the scope.

General Form: Flow Chart:

IF (L) S

TRUE
Examples: 5

IF (X.EQ.Y) U = V+W FALSE

IF (T.GT.0.AND.S.LT.R)
. I = I+
2 = 0.1
..FIN

6.1.2 UNLESS

Description: "UNLESS (L )" is functionally equivalent to
"IF(.NOT.( L))", but is more convenient in some contexts.

General Form: Flow Chart:

UNLESS (L) S

. FALSE
Examples: 5
UNLESS (X.NE.Y) U = VeW TRUE
UNLESS (T.LE.0.OR.S.GE.R)
1 = Ie1
. Z = 0.1
DODFIN

4-11




AD-AL110 271 PAR TECHNOLOGY CORP ROME NY F/6
SABERSs STAND=-ALONE ADIC BINARY EXPLOITATION RESOURCES SYSTEM, ”ETC(U)
SEP 81 A J FRANKLIN: R L CALOWELLs S COLE F30602-75°C-0078
UNCLASSIFIED RADC-TR=-81=-250=-VOL~1

i




22

T
N
™

|2 & &
E e
||||| LB B
= |
22 s b

MICROCOPY RESOLUTION TEST CHART
ecesssmsnsl

A LUOMAL el



6.1.3 WHEN...ELSE

Description: The WHEN...ELSE statements correspond to the
IF...THEN...ELSE statement of Algol, PL/1, Pascal, etc. In Flecs,
b~ath the WHEN and the ELSE act as structured statements although
only the WHEN has a specification. The ELSE statement must
immediately follow the scope of the WHEN. The specifier of the
WHEN is evaluated and exactly one of the two scopes is executed.
The scope of the WHEN statement is executed if the expression is
true and the scope of the ELSE statement is executed if the
expression is false. In either case, control then passes to the
next statement following the ELSE statement.

General Form: . Flow Chart:

WHEM (L) S,
ELSE S,

TRUE 51

Examples:

WHEN (X.EQ.Y) U
ELSE U = V=W

FALSE
VeW

WHEN (X.EQ.Y) < é&

. U = VeW

. T = T+1.5
...FIN

ELSE U = V-W

V+W

WHEN (X.EQ.Y) U
ELSE
. U
. T
...FIN

V=W
T+1.5

WHEN (X.EQ.Y)
. U = VoW

. T = T=1.5
...FIN -
ELSE
. U =z V=W

. 'r = T*1.5
...FIN

NOTE: WHEN and ELSE always come as a pair of statements, never
separately. Either the WHEN or the ELSE or both may assume the
multi-line form. ELSE is considered to be a control phrase, hence
cannot be placed on _the same line as the WHEN. Thus
"WHEN ( £ ) 8, ELSE 8; " is not valid.

4-12




6.1.4 CONDITIONAL

Description: The CONDITIONAL statement is based on the LISP
conditional. A list of logical expressions is evaluated one by
one until the first expression to be true is encountered. The
scope corresponding to that expression is executed, and control
then passes to the first statement following the CONDITIONAL. 1If
all expressions are false, no scope is executed. (See, however,
the note about OTRERWISE below.)

General Form: Flow Chart:

CONDITIONAL
(L) S
(L2) 82

(L) Sn
«FIN
Examples:

CONDITIONAL

. (X.LT.=5.0)
. (X.LE.1.0)
. (X.LE.10-5) U-Z mE

"QFIN 5" ﬁ

CONDITIONAL FALSE
. (A.EQ.B) Z
. (A.LE.C)

UsW : :
U+W+2Z

(= =Y =
nun

"
Y
o

. Y= 2.0
. 2 = 3.4
...FIN

. (A.GT.C.AND.A.LY.B) Z =6.2
. (OTHERWISE) Z = 0.0
...FIN

Notes: The CONDITIONAL itself does not possess a one-line form.
However, each "(lk) " is treated as a structured statement and
may be in one-line or multi-line form.

The reserved word OTHERWISE represents a catchall condition. That
is, "(OTHERWISE) 8¢ " is equivalent to "(.TRUE.) 8¢ " in a
CONDITIONAL statement.




6.1.5 SELECT

Description: The SELECT statement is similar to the CONDITIONAL
but is more specialized. It allows an expression to be tested for
equality to each expression in a list of expressions. When the
first matching expression is encountered, a corresponding scope is
executed and the SELECT statement terminates. In the description
below, & ,€ ,..., &4 represent arbitrary but compatible
expressions. Any type of expression (integer, real, complex,...)
is allowed as long as the underlying Fortran system allows such
expressions to be compared with an .EQ. or .NE. operator.

General Form: Flow Chart:
'SELECT (&)
. (E2) &2
. (Ew) Sn
OOOFIN
Example:

SELECT (OPCODE(PC))
(JUMP) PC = AD

(ADD) TRUE p
A = A+B *Sn "4ﬁ
. gguz PC+1 PALSE

,. (SKIP) PC = PC+2
. (STOP) CALL STOPCD
.. .FIN

Notes: As in the case of CONDITIONAL, at most one of the fk will
be executed.

The catchall OTHERWISE may also be used in a SELECT statement.
Thus "(OTHERWISE) Sm " is equivalent to "(€) Sp " within a
"SELECT (& )" statement.

The expression € is reevaluated for each comparison in the list,
thus lengthy, time consuming, or irreproducable expressions should
be precomputed, assigned to a variable, and the variable used in
the specification portion of the SELECT statement.

4-14




X —=—-——-—-—-—-——_—;‘

6.2 LOOP Structures

The structured statements described below all have a scope which
is executed a variable number of times depending on specified
conditions.

Of the five loops presented, the most useful are the DO, WHILE, and
REPEAT UNTIL loops. To avoid confusion, the REPEAT WHILE and
UNTIL loops should be ignored initially.

6.2.1 DO

Description: The Flecs DO loop is functionally identical to the
Fortran DO loop. The only differences are syntactic. 1In the
Flecs DO 1loop, the statement number is omitted from the DO
statement, the incrementation parameters are enclosed in
parenthesis, and the scope is indicated by either the one line or
multi-line convention. Since the semantics of the Fortran DO
statement vary from one Fortran compiler to another, a flowchart
cannot be given. The symbol T represents any legal
incrementation specification.

General Form: Equivalent Fortran:

S DO 30 T

S

- 30 CONTINUE

o )

Examples:
Do (I = 1,N) A(I) s 0.0

DO (J = 30K93)

. B(J) = B(J=1)%B(J=2)
. C(J) = SIN(B(J))
«..FIN

4-15




6.2.2 WHILE

Description: The WHILE 1loop causes its scope to be repeatedly
executed while a specified condition is true. The condition is
checked prior to the first execution of the scope, thus if the
condition is initially false the scope will not be executed at
all.

General Form: Flow Chart:

WHILE (L) S

FALSE
Examples:

WHILE (X.LT.A(I)) I I+1

WHILE (P.NE.OQ)

VAL(P) = VAL(P)+1
. P = LINK(P)
...FIN

TRUE
S
6.2.3 REPEAT WHILE

Description: By using the REPEAT verb, the test can be logically
moved to the end of the loop. The REPEAT WHILE loop causes its
scope to be repeatedly executed while a specified condition
remains true. The condition is not checked until after the first
execution of the scope. Thus the scope will always be executed at
least once and the condition indicates under what conditions the
scope is to be repeated. Note: "REPEAT WHILE(L)" is functionally
equivalent to "REPEAT UNTIL(.NOT.(L))".

General Form: Flow Chart:
REPEAT WHILE (L) S t'__

Examples:

REPEAT WHILE(N.EQ.M(I)) I = I+i
REPEAT WHILE™ (LINK(Q).NE.O)

TRUE

R = LINK(Q)

LINK(Q) = P

P = Q FALSE
. Q=R
..FIN

4-16




6.2.4 UNTIL

Description: The UNTIL loop causes its scope to be repeatedly

executed until a specified condition becomes true. The condition

is checked prior to the first execution of the scope, thus if the

condition is initially true, the scope will not be executed at

a(llﬁ.r t:oct;-)shat "UNTIL (L£)" is functionally equivalent to "WHILE
.NOT. .

General Form: Flow Chart:
UNTIL (L) §
TRUE
Examples:
UNTIL (X.EQ.A(I)) I = I+1  FALSE

UNTIL (P.EQ.0)

VAL(P) = VAL(P)+1
. P = LINK(P)
...FIN

6.2.5. REPEAT UNTIL

Description: By using the REPEAT verb, the test can be logically
moved to the end of the loop. The REPEAT UNTIL loop causes its
scope to be repeatedly executed until a specified condition
becomes true. The condition is not checked until after the first
execution of the scope. Thus the scope will always be executed at

i least once and the condition indicates under what conditions the
L repetition of the scope is to be terminated.

i ‘ General Form: Flow Chart:

- REPEAT UNTIL (L) S t___
? Examples: S

| REPEAT UNTIL (N.EQ.M{I)) I = I+1

REPEAT UNTIL (LINK(Q).EQ.0)

S . R = LINK(Q) FALSE
o . LINK(Q) = P '
r . P =2Q
] Q = R TRUE
SR ... FIN
4-17




DS e WL Gt

P T T T 2T T R, e e T ey YN N e AR P T 4 W A b - LT e ST S

7.0 Internal Procedures

In Flecs a sequence of statements may be declared an jpnternal
procedure and given a name. The procedure may then be invoked
from any point in the program by simply giving its name.

pames may be any string of letters, digits, and hyphens
(i.e. minus signs) beginning with a letter and containing at
least one hyphen. Internal blanks are not allowed. The only
restriction on the length of a name is that it may not be continued
onto a second line.

Examples of valid internal procedure names:

INITIALIZE-ARRAYS
GIVE-WAKNING
SORT-INTO-DESCENDING-OURDER
INITIATE-PHASE-3

A procedure declaration consists of the keyword "TO" followed by
the procedure name and its scope. The set of statements
comprising the procedure is called its scope. If the scope
consists of a single simple statement it may be placed on.the same
line as the "TO" and procedure name, otherwise the statements of
the scope are placed on the following lines and terminated with a
FIN statement. These rules are analogous with the rules for
forming the scope of a structured statement.

General Form of procedure declaration:

TO procedure-name

Examples of procedure declarations:
TU RESET-POINTER P = 0
TO DU~NOTHING CONTINUE

TO SUMMARIZE-FILE
INITIALIZE-SUMMARY
OPEN-FILE
REPEAT UNTIL (EOF)

« ATTEMPT-TO-READ-RECURD
. WHEN (EOF) CLOSE-FILE
. ELSE UPDATE-SUMMARY
.. .FIN
OUTPUT-SUMMARY
.FIN

4-18

BRI

" Attt P S . e 7B e i o

s e o £ Wb, 7}




An internal procedure reference is a procedure name appearing i
where an executable statement would be expectqd. In fact an y
internal procedure reference is an executable simple statement and :
thus may be used in the scope of a structured statement as in the

last example above. When control reaches a procedure reference

during execution of a Flecs program, a return address is saved and

control is transferred to the firat statement in the scope of the
procedure. When control reaches the end of the scope, control is
transferred back to the statement 1logically following the
procedure reference.

A typical Flecs program or subprogram consists of a sequence of
Fortran declarations: (e.g. INTEGER, DIMENSION, COMMON, etc.)
followed by a sequence of executable statements called the body of
the program followed by the Flecs internal procedure declarations,
if any, and finally the END statement.

Here is a complete (but uninteresting) Flecs program which
illustrates the placement of the procedure declarations.

00010 C INTERACTIVE PROGRAM FOR PDP-10 TO COUMPUTE X##2,
00020 C ZERO IS USED AS A SENTINEL VALUE TO TERMINATE EXECUTION.

00030
00040 REAL X,XSQ
00050 REPEAT UNTIL' (X.EQ.0)
00060 GET-A-VALUE-GF-X
00070 . IF (X.NE.O)
00080 . . COMPUTE-KESULT
00090 . . TYPE-RESULT
00100 . +..FIN
00110 .. .FIN
00120 CALL EXIT
00130 TO GET~A-VALUE-OF-X
00140 . TYPE 10
00150 10 . FORMAT (° X = °,$)
00160 . ACCEPT 20,X
00170 20 .  FORMAT (F)
00180 .. FIN
: 00190 TO COMPUTE-KRESULT XSQ = X#*X
S 00200 TO TYPE-RESULT
¥ 00210 . TYPE 30, XSQ
- 00220 30 . FORMAT(® X-SQUAKED = ,F7.2)
| 00230 ...FIN
- 00240 END

4-19




Notes concerning internal procedures:

1‘

All internal procedure declarations must be placed at the
end of the program just prior to the END statement. The
appearance of the first "TO"™ statement terminates the
body of the progranm. The translator expects to see
nothing but procedure declarations from that point on.

The order of the declarations 1is not impobtant.
Alphabetical by name is an excellent order for programs
with a large number of procedures.

Procedure declarations may not be nested. In other
words, the scope of a procedure may not contain a
procedure declaration. It may of course contain
executable procedure references.

Any procedure may contain references to any other
procedures (excluding itself).

bynamic recursion of procedure referencing is not
permitted.

All program variables within a main or subprogram are
global and are accessable to the statements in all
procedures declared within that same main or sub
progranm.

There is no formal mechanism for defining or passing
parameters to an internal procedure. When parameter
passing is needed, the Fortran function or subroutine
subprogram mechanism may be used or the programmer may
invent his own parameter passing methods using the global
nature of variables over internal procedures.

The Flecs translator separates procedure declarations on
the listing by dashed lines as shown in the preceding
example.

4-20




8.0 Restrictions and Notes

If Flecs vwere implemented by a nice intelligent compiler this
section would be much shorter, Currently, however, Flecs is
implemented by a sturdy but naive translator. Thus the Flecs
programmer must observe the following restrictions.

1.

Flecs must invent many statement numbers in creating the
Fortran program. It does so by beginning with a large number
(usually 99999) and generating successively smaller numbers as
it needs them. Do not use a number which will be generated by
the translator. A good rule of thumb is to avoid usipg 5

digit statement pumbers.

The Flecs translator must generate integer variable names. It
does so by using names of the form "Innnnn" when nnnnn is a §
digit number related to a generated statement number. Do pot
use varialles of the I:uﬂn inonon and avold causing them to be
declared other than . For example the declaration
"IMPLICIT REAL (A-Z)" leads to trouble. Try "IMPLICIT REAL (A-
H, J=-2)" instead. .

The translator does not recognize continuation lines in the
source file. Thus Fortran statements may be continued since
the statement and its continuations will be passed through the
translator without alteration. (See chapter 2.) However, an
extended Flecs statement which reguires translation may not be
gontinued. The reasons one might wish to continue a Flecs
statement are 1) It is a structured statement or procedure
declaration with a one statement scope too long to fit on a
line, or 2) it contains an excessively 1long specification
portion or 3) both of the above. Problem 1) can be avoided by
going to the multi-line form. Frequently problem 2) can be
avoided when the specification is an expression (logical or
otherwise) by assigning the expression to a variable in a
preceding statement and then using the variable as the
specification.

Blanks are meaningful separators in Elecs statements: don b
put them in dumb places like the middle of identifiers or key

words and ¢o use them to separate distinct words like KEPEAT
and UNTIL.

»

Let Flecs indent the listing. Start all statemenpnts ib col. I
and the listing will always reveal the true structure of the

program. (as understood by the translator, of course).

As far as the translator is concerned, FORMAT statements are
executable Fortran statements since it doesn’t recognize thenm
as extended Flecs statements. Thus, g9opnlvy place

atatements where an executable Fortran statement would bDe
acgeptable. Don t put them between the end of a WHEN

4-21

S i ol




statement and the beginning of an ELSE statement. DbLon’t put
them between procedure declarations.

Incorrect Examples: Corrected Examples:
WHEN (FLAG) WRITE(3,30) WHEN (FLAG)
30 FORMAT(7H TITLE:) . WRITE(3,30)
ELSE LINE = LINE+1 30 . FORMAT(7H TITLE:)
+«.FIN
ELSE LINE = LINE+1
TO WRITE-HEADER : TO WRITE-HEADER
. PAGE = PAGE+1 . PAGE = PAGE+1
. WRITE(3,40) H,PAGE . WRITE(3,40) H,PAGE
«..r'IN 40 . FORMAT(7041,1I3)
40 FORMAT (7041,I3) ... FIN

The translator, being simple-minded, recognizes extended Flecs
statements by the process of scanning the first identifier on
the line. If the identifier is one of the Flecs keywords IF,
WHEN, UNLESS, FIN, etc., the line is assumed to be a Flecs
statement and is treated as such. Thus, the Flecs kevwords
are reserved and may pot be used 3s yariable names. In case

of necessity, a variable name, say WHEN, may be slipped past
the translator by embedding a blank within it. Thus ™WH EN"
will look like "WH" followed by "EN" to the translator which
is blank sensitive, but 1like "WHEN"™ to the compiler which
ignores blanks.

In scanning a parenthesized specification, the translator
scans from left to right to find the parenthesis which matches
the initial 1left parenthesis of the specification. The
translator, however, is ignorant of Fortran syntax including
the concept of Hollerith constants and will treat Hollerith
parenthesis as syntactic parenthesis. Thus, aveid placing
Hollerith constants parenthesis
gngg;ﬁiga;;gn;. If necessary, assign such constants to a
variable, using a DATA or assignment statement, and place the
variable in the specification.

Incorrect Example: Corrected Example:
IF (J.EQ. (") LP = “(°
IF(J.EQ.LP)

The Flecs translator will not supply the statements necessary
to cause appropriate termination of main and sub=-programs.
Thus it 13 necessary Lo include the approoriate RETURN. STOQR.
or CALL EXIT statement prlor to Lthe first

declaration

. Failure to do so will result in control entering
the scope of the first procedure after leaving the body of the
program. Do not place such statements between the procedure
declarations and the END statement.

4-22




9.0 Errors

This section provides a framework for understanding the error
handling mechanisms of version 22 of the Flecs Translator. The
system described below is at an early point in evolution, but has
proven to be quite workable.

The Flecs translator examines a Flecs program on a line by line
basis. As each line is encountered it is first subjected to a
limited gsyntax analysis followed by a gontext analysis. Errors
may be detected during either of these analysis. It is also
possible for errors to go undetected by the translator.

§.1 Syntax Errors

When a syntax error is detected by the translator, it jgpnores the
statement. On the Flecs listing the line number of the statement
is overprinted with -"s to indicate that the statement has been
ignored. The nature of the syntax error is given in a message on
the following 1line.

The fact that a statement has been ignored may, of course, cause
some context errors in later statements. For example the control
phrase "WHEN (X(I).LT.(3+4)" has a missing right parenthesis.
This statement will be ignored, causing as a minimum the following
ELSE to be out of context. The programmer should of course be
aware of such effects. More is said about them in the next
section.

9.2 Context Errors

If a statement successfully passes the syntax analysis, it is
checked to see if it is in the appropriate context within the
program. For example an ELSE must appear following a WHEN and
nowhere else, If an ELSE does not appear at the appropriate point
or if it appears at some other point, then a context error has
occurred. A frequent source of context errors in the initial
stages of development of a program comes from miscounting the
number of FIN's needed at some point in the program.

With the exception of excess FIN's which do not match any
precedin control phrase and are ignored (as indicated by
overpringing the line number), all context errors are treated with
a uniform strategy. When an out-of=-context source statement is

4-23




encountered, the translator generates a "STATEMENT(S) NEEDED*
message. It then invents and processes a sequence of statements
which, if they had been included at that point in the program,
- would have placed the original source statement in a correct
o context. A message is given for each such statement invented.
g The original source statement is then processed in the newly
created context.

By inventing statements the translator is not trying to patch up
the program so that it will run correctly, it is simply trying to
adjust the local context so that the original source statement and
the statements which follow will be acceptable on a context basis.
As 1in the case of context errors generated by ignoring a
syntactically incorrect statement, such an adjustment of context
frequently causes further context errors later on. This is called

Rropagatiop of context errors.

One nice feature of the context adjustment strategy is that

‘ context errors cannot propagate past a recognizable procedure
declaration. This is because the "TO" declaration is in context
only at indentation level 0. Thus to place it in context, the
translator must invent enough statements to terminate all open
control structures which preceed the "TO". The programmer who
modularizes his program into a collection of relatively short
internal procedures, limits the potential for propagation of
context errors.

9.3 Undetected Errors

I The Flecs translator is ignorant of most details of Fortran

syntax. Thus most Fortran syntax errors will be detected by the

, Fortran compiler not the Flecs translator. 1In addition there are

) two major classes of Flecs errors which will be caught by the
L compiler not the translator.

The first class of undetected errors involve misspelled Flecs
L keywords. A misspelled keyword will not be recognized by the
SR translator. The line on which it occurs will be assumed to be a
Fortran statement and will be passed unaltered to the compiler
which will no doubt object to it. For example a common error is to
spell UNTIL with two L°s. Such statements are passed to the
4 , compiler, which then produces an error message. The fact that an
? intended control phrase was not recognized frequently causes a
S later context error since a level of indentation will not be
e triggered. :

The second c¢lass of undetected errors involves unbalanced
parentheses. (See also note 8 in section 8.0). When scanning a
parenthesized specification, the translator is looking for a

4-24

e




matching right parenthesis. If the matching parenthesis is
encountered before the end of the line the remainder of the line is
scanned. If the remainder is blank or consists of a recognizable
internal procedure reference, all is well. If neither of the
above two cases hold, the remainder of the line is ggsumed
(without checking) to be a simple Fortran statement which is
passed to the Compiler. Of course, this assumption may be wrong.
thus the statement

0"

"WHEN (X.LT.A(I)+Z)) X
is broken into

keyword "WHEN"
specification "(X.LT.A(I)+Z)"
Fortran statement ") X = Q"

Needless to say the compiler will object to ") X = (" as a
statement.

Programmers on batch orientea systems have less difficulty with
undetected errors due to the practice of running the progran
through both the translator and the compiler each time a run is
submitted. The compiler errors usually point out any errors
undetected by the translator.

Programmers on timesharing systems tend to have a bit more
difficulty since an undetectea error in one line may trigger a
context error in a much later line. Notiecing the context error,
the programmer does not proceed with compilation and hence is not
warned by the compiler of the genuine cause of the error. OUne
indication of the true source of the error may be an indentation
failure at the corresponding point in the listing.

9.4 Other Errors

The translator detects a variety of other errors such as multiply
defined, or undefined procedure references. The error nessages
are self-explanatory. (Really and truly!)

4-25

e g i vl




10.0 Procedure for use

The following subsections describe the procedures for using the
Flecs translator on various machines at the University of Oregon.

10.1 On the PDP-10

10.1.1 Source Preparation

Prepare a Flecs source file with any name of your choosing and an
extension of " _FLX". The translator will accept either
line-numbered (SOS, LINED, EDITS) or non-line-numbered (TECO)
files. The advantage of 1line numbered files 1is 'that the
translator and compiler error messages may be related directly to
the source file without reference to a listing. As with Fortran
the "tab to column 7" convention may be used.

10.1.2 Compile Commands

The Compile <c¢lass commands (COMPILE, EXECUTE, LOAD, etc.)
recognize the extension .FLX and will invoke the Flecs translator
when necessary. When invoked, the Flecs translator will send any
error messages to the TTY and will normally produce an .F4 file.
The /NOBIN switch will suppress production of the .F4 file and
should only be used with the "COMPILE" command. The /LIST switch
will cause the translator to produce an indented and formatted

source listing with extension .LST which may then be TYPE or
PRINT ‘ed.

Examples: (Assume files A.FLX, B.F4, C.MAC).

.EX A, B, C Produce A.FY4 using Flecs, then compile A.FY4
and B.F4, then assemble C.MAC, then load and
execute A.REL, B.REL, and C.REL.

.COlM/NOBIN/LIST A Produce an indented 1listing of A.FLX but
don"t produce A.FH.

.COM A Run A.FLX through Flecs, then A.F4 through
Fortran.

Wote 1: Uninvoked internal procedures and too many or too few
"FIN" ‘s preceeding a TO or END statement are considered minor
errors by Flecs. All others are considered major. If any
ma jor errors are detected by the translator, it will abort any
following compilation, loading, and execution.

4-26




Hote 2: (COMPIL invokes the Flecs translator whenever the ".Fi"
file 1is missing or older than the ".FLX" file, regardless of
the existance or time of a ".REL" file. If you wish to save
disk space by deleting the .F4 file, you must then use .EX
A.REL or ,EX/REL A to avoid retranslation and recompilation.

Note 3: If COMPIL finds an .F4 file which is newer than the .FLX
file it assumes (without 1looking) that the .REL file also
exists. LINK will be unhappy if this is not true. To create
a new .REL file without retranslation, do .EX A.F4.

10.1.3 Explicit Invocation

Flecs may be invoked explicitely by ".R FLECS". Flecs will
prompt with a "#" ¢o which you may respond with any of the
command formats below:

COMMAND ACTION -

AR G =P D e an GRS ) W G W WD D YD B S

<CR> TERMINATE EXECUTION

C F4 LST ERR

=C ERR

y =C ERR
A =C 3 ZRR
A, =C Fy ERR
,B=C LST ERR
A,B=C F4 L3ST ERR

where blanks may be used freely and

<CR> represents a carriage return

A,B,C represent file specifications (see below).

. means an ".Fiy" file will be produced

LST means an ".LST" file will be produced.

ERR means error messages will be sent to the TTY.

File Specification Format

DEV:FNAME.EXT{PPN]

SYMBOL MEANING DEFAULT IF OMITTED

DEV: device DSK:

FNAME file name must be specified in all cases except

command format "C" where the name given
to the " FLX" file is also used for the
" ,F4", and ".LST" files.

.EXT extension " . F4" for A above
", LST" for B above
" FLX" for C above

(PPN] proj,prog # same as job using Flecs.

Note: the Flecs translator will run approximately 20% faster for
each output file omitted.

4-27




10.2 Un the IBn $/360

Un the IBM S/3b0 there are two ways of accessing Flecs which have
come to be known as WATFLECS and Standard Flecs. WATFLECS is a
specially adapted version of the Flecs translator which processes
batches of short jobs using the WATFIV compiler and is used ,
primarily in connection with Computer Science classes. Standard ?
Flecs is a stand alone Flecs translator used for larger production
programs, usually in conjunction with the 1level ( VFortran
compiler. Cataloguea procedures which are analogous to those for
Fortran(u) exist for using Standard Flecs. WATFLECS is accessed
through a special submission process. The same Flecs translation
logic is used for both systems so the only language differences
are those due to the incompatibilities of the corresponding

Fortrans. |

10.2.1 WATFLECS

The procedure for preparing and submitting a program under
WATFLECS is almost identical to the procedure for submitting a job
under WATFIV. 7The deck set up is shown below

$JUB 100557/yourname,any-desired-watfiv-parameters,KPz29
Flecs source program

SENTRY

data cards (if any)

Steps in submitting a WATFLECS Jjob:

1. Prepare the Flecs program or programs and data cards on an 029
keypunch. Although WATFIV will, the WATFLECS translator will
not accept cards punched on an 026 keypunch.

2. Prepare a golid pink $JOP card as shown above.
a) The characters "3JOB" should begin in column 1.

b) The account number 100557 should begin in column 7,
followed by a "/". :

¢) Fill in your name followed by a comma.

6) Supply any desired WATFIV parameters. hote: the WATKILV
part of the run will be limited to 6 seconds.

e) Supply the required "KP=z29" parameter.

4-28

P A




(¥4

Place the Flecs program behind the $JOb card.

Place a card with "$ENTRY" bpeginning in column 1 behind the

program. Ihe SENTHY card must alwavs be present whether or
not there are anv data cards.

Place any data cards behind the $ENTRY card.

Place a rubber band around the deck and submit to program
reception. The receptionist will place a numbered comment
card in the program and give a duplicate card as a receipt.

Check the latest WATFLECS job number posted on the blackboard
at program reception. As soon as the posted number is greater
than or equal to the receipt number, pick up the deck and
listings by presenting the receipt card.

Notes on preparing a WATFLECS program:

1'

2.

An 029 keypunch pust be used..

WATF1V does not follow the ANSI standard for rortran in that
it does not allow a Fortran program to jump out ot the scope of
a DO and later jump back in. Since Flecs internal procedure
calls are implemented by GU 10°s, it is not possible to

reference ap internal procedure within the scope of a DC loop
vhen using WATIFLECS. The other loop structures may be used to

simulate a DO loop, however,

WaMnﬂnmﬂMaww
abhead of the first internal progedure declaration.

The following unit numbers are available in WATIFLECS.

Upit  Rurpose
1 card input (from $LNTKY cards)
2 undefined
3 printed output
47 scratch disk (read/write)
8-10 class input data sets (read only)

The various "$" cards which control the listing of a WATKLV
program may be included in the program but will be ignored by
the current WATFLECS system.

The user may wish to employ the NOWARN and NOEXTEN WATFIV-

parameters since Fflecs generated Fortran triggers a lot of
warnings and extensions.

4-29




— e —— & e

10.2.2 Standard Fleecs

A cataloged JCL procedure exists for using the Flecs translator as
a 3tand alone program. In addition cataloged procedures exist for
running Flees followed by Fortran (G.

Lata sets for the translator:

The translator requires three .data sets with the following LD
names.

LIST is the output data set containing the Flecs listing.

FORTOUT 1is the output data set containing the Fortran source
proauced by the translator.

SYSIK is the input data set containing the Flecs source.

The LCB information for these data sets is given below. It is
fixed by and contained in the program hence need not be specified

in the J(L.

LisT DCb= (KkCKM=sFA ,BLKSIZE=1375)
FUNTUUT DCBs (HECFM=F ,BLKS1ZE=50)
SYSLN LDCB= (KECFM=F , BLKSIZE=80)

Using the translator as a stand alone Drogram:

The cataloged procedure FLECS is a one step procedure which runs
the Flecs translator. The user must supply the SYSIN data set.
Default DD statements in the procedure send LIST to the printer
and FORTOUT to a dummy data set. If desired, these DD statements
may be overridden as illustrated in the examples below.

Example: OUbtaining a printed Flees 1listing and ignoring the
rortran source produced.

// Jjobname JOB accounting information
// stepname LXEC FLECS
// SYSIN Db )

rlecs source progranm

/®

4-30




Example: Ubtaining a printed version of both the Flecs listing and
the Fortran source.

~// jobname JOB accounting information 1
// stepname EXEC FLECS [
// FORTOUT DD SYSOUT=A :
// SYSIN DD . b o

Flecs source progran

/i

Example: Obtaining a printed version of the rflecs listing and
passing the Fortran source to the Fortran(h) compiler for
compilation- only. (This example illustrates the general method of
passing the Fortran source on to a subsequent step and suppressing
the Fortran listing.)

// jobname JOB accounting information

// stepnamel EXEC FLECS

// FORTOUT DD DSWAME=&TEMP,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
// SYSIN bb *

Flecs source

// stepname?2 EXEC FOrTHC,PARM.FUKT= "NOSOURCE’
// FORT.SYSIN wp DSWAME=&TEMP ,DISP=(OLD,DELETE)

- | Several cataloged procedures have been established which simplify

S the process of using Flecs together with Fortran (G). The
, procedure names are given below together with the Fortran
N procedures to which they correspond.

FLECSC FORTGC

FLECSCL FORTGCL
- FLECSCLG FORTGCLG
F- FLECSGO FORTGO

The reader is assumed to be familiar with the "FUKTU" procedures.
The Flecs procedures have been derived from the FORTG procedures
by adding an initial step named FLECS which runs the Flecs
translator and which passes the FOKRTOUT data set to the following
step. Since error messages from the Fortran compiler will contain
the line number of the original Flecs source statement, the
programmer will have little occasion to use the source listing
produced by the Fortran compiler, For this reason the source
listing from the Fortran compiler has been suppressed by including

L -

¢
i

4-31

- L




a “WUSUUKRCE® parameter lor the Fortran compiler.

Example: Translating, compiling, linkage editing and executing a
Flecs program with previously compiled object decks and data.

// jobname JOB accounting information
// stepname EXEC FLECSCLG
// FLECS.SYSIN DD .

rlecs source program

/*
// LKED.SYSIN bb *

Previously compiled or assembled object decks

/% .
// GO.SYSIN bb .

input data
/&

Note: To obtain *“he source 1listing from the Fortran compiler,
replace the "EXEC* <ard above with the following: '

// stepname EXEC FLECSCLG,PARM.FORT= "SOUKCE *

In general, a Flecs run using one of the Flecs procedures is
identical to a Fortran(G) run using the corresponding FOKTU
procedures with the following changes:

1. Change the procedure name from FORTGxxx to FLECSxxx
(exception FORTGO becomes FLECSGO)

2. Change the SYSIN DD card frowm FORT.SYSIN to FLECS.SYSIN.
3. If desired, override the suppression of the source

listing by including PARM.FOGKT="SOUKCE’ on the EXEC card
as described above.

- 4=32




A
i
£
i

O

Appendix A: Flecs Summary Sheet |
(" ¥ (L) S (" wnEss (L) 0§ ) (" weN (L) S, )
ELSE S
TRUF.
S
FALSE
. y,
) —\
( COHDITIONAL r SELECT (&)
’ (44) S,, ' (€z) S,
(L) Sa . €2) 82
' ([.u), :9» (é) Su
" FIN RN CARRY-OUT-ACTION
TO CARRY-0UT-ACTION S
(m (L) § )
NOTE: PLACE A PETURN, STOP, on
CALL EXIT sTavement anead
OF TME FIRST T STATEMENT.
woTe: OTHERWISE cam pe useD As
A CATCHALL CONDITION OR
— expression 1k CONDITIONAL
5 AND SELECT starements,
n —"1
FALSE FALSE - LESEND: L = LOGICAL EXPRESSION
8 = stavement(s)
J € = expression
. J \_ Z = [0 speciFtcaTION
N WY 4 / :
rRE!’!{M’UMTIL(C).‘5 REPEAT WHILE (L) Sj wTIL (L) 5ﬁ r WILE (L) S A
5 5 TRUE FALSE
] FALSE TRUE
FaLse TRUE S S
TRUC saLSE l l
\ J 4-33 —‘L J \_ 1 /
[ : -
M N




This duplicate Fle¢s Summary Sheet may be removed from the manual.

( IF (L) S )

—

WLESS (£) S ) [

TRUE

FALSE

WEN (L) S )
ELSE S,
TRUE
S
FALSE
A
\ t _

]

)L

_J

MOTE:

NOTE:

LEGEND:

CARRY-QUT-ACTION

TO CARRY-OUT-ACTION S

(mun 5)

pLACE A RETURN, STOP. or
CALL EXIT STATEMENT ANEAD
OF THE FIRST TO STATEMENT.

OTHEPWISE can BE USED AS
A CATCHALL CONDITION OR
expression 1N CONDITIONAL
AND SELECT sTavements,

£ = LOGICAL SXPRESSION
S = STATEMENT(S)

£ = expression

Z = D0 SPECIFICATION

N

j
PEPEAT UNTIL (L) S

(" vepeaT WHILE (L) S )

wmiL <L) S )

(- WHILE (L) S

FALSE

TRUE

J‘E__

FALSE

4-3

A

FALSE

TRUE

S
| I—
L

o o A Yt 18 i




APPENL1X b: Available Locumentation Concerning Flecs
' (As of vecember 1974.)

Beyer, 1., Flecs Users Manual (University of Uregon kdition)

Lontains a concise description of the Flecs extension of :
rortran and of the details necessary to running a Flecs
program on the PDP-10 or the IBM S/360 at Oregon. '

Beyer, T., Flecs: System Modification Guide

Contains information of interest to anyone who wishes to
install or adapt the Flecs system to & new machine or
operating system. Also of interest to those who wish to
improve the efficiency of the system by rewriting portions of
the system in assembly language.

4-35




I R S

f“"v”*‘ PR PR —— -




